INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “‘target’”’ for pages apparently lacking from the document
photographed is ““Missing Page(s)’’. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete gontinuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

.When a map, drawing or chart, etc.,, was part of the material being

photographed the photographer followed a definite method in
“sectioning’’ the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
“photographs” if essential to the understanding of the dissertation. Silver
prints of “photographs’” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

. 75-9773

‘ENGEL, Gerald Lawrence, 1942-
A REVIEW AND ANALYSIS OF "CURRICULUM 's8".

* The Pennsylvania State University, D.Ed., 1974
Computer Science

~ Xerox University Microfilms, ann arbor, Michigan 48106

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

f The Pennsylvania State University
The Graduate School

Department of Computer Science
A Review and Analysis of "Curriculum '68"

A Thesis in
Computer Science
by

Gerald Lawrence Engel

3. Submitted in Partial Fulfillment
] of the Requirements
for the Degree of

Doctor of Education

August 1974

Date of Signature: Signatories:

5; ; ; ; ; Bruce H. Barnes, ASsociate
Professor of Computer Science

Chai n of Committeg-

Th Advisor '
%Z‘/“/ﬂ, /77’7/ Cpars) e A
57 o Rosemary Schraer, Acting Head,
Department/of Computer Science

i

Table of Contents

LiSt Of TableSsesecseceossaceavsossccavoossersossorssosenseeill
LiSt Of ChartS.ieececesoesssaacesccsacosscsscssscssosnscscnnss 1V
IntroduCtioNes.cesocccesscesstoossscsssssssssassossnsossscsase V
1. Overview of "Curriculum '68".....ccccieecccccescccennses 1
2, Critiques of "Curriculum '68M.c.iceveeccceccsoccessases 19
3. Relationship to Previous and Simultaneous Work..,.s..... 36
4. Relationship to Existing ProgramSe.ecceeceeeccsecocccsecasee 58
5. Individual COUIPSESecsescocorocsoccscosccssssscsncsssasesll?
6. Subsequent WOrK.eessoossossascessssoasssocassssccsssseell?
7. Impact of "Curriculum "68M..c.eieccesccercssessssscaeasl5l

Bibliography.lucctcac.dc-aocotcc0...000.»;;”.’05.o.o.-.o'l..-l60

iii

List of Tables

4-1
4-2

4-3

4-4

4-6
4-7
4-8

4-9
4-10
4-11
4-12

4-13

4-14
4-15

4-16

4-17

4-18

4-19

Computer Science Related Degrees Offered 1971-2...... 59

Degrees Awarded in Computer Science and Related
Programs 1970_710000O.ll.'..Q..‘l..ol...!‘....l‘ll'. 61

Enrollment in Computer Science Related Degree
Pr‘ogranls 1969—70.000l"l"‘l’l..c.lo.l.’.O..lllll... 62

Course Data for Courses of "Curriculum '68"...ecoceee 65
Course Data for Service COUrSES.scececascsscsasvcasss 68
Course Data for Data Processing COUPSESsceesecssseess 69
Course Data for Other COUPSES.e.ceeecrcccsccvssssonsse 70

Relation of Courses in Existing Programs to Courses
of "CUrPiCulum '68".!.-...0.0...000"....“.....!... 73

Core Courses of Master's Program.ccceececceesscsscesss 80
"Curriculum '68" COUPrSESeiesesessossecsacsscscsssasanss 84
Mathematics COUPSESiessvsrsrsosasesesssssssacscsscnss 86
Additional COUPSESesesssscsesoccasscscsscssesascsncee 87

Programming Languages in Which Proficiency Is
Expected Upon GraduatioN.cececescessccscccssessssees 89

Service COUPSES.esssstssssssoceassssssssscssssoossane 0
Undergraduate Course RankingSeeeseecececonssessscaces 94
Master's Course RankingSeesseseessoscccoososssocnssos 95
Undergraduate Program Course EvaluatiONeeececseceacse 99
Areas of Importance and Degree of Coverage.scessseess102

Additional Courses Recommended for the Curriculum....l03

A

List of Charts

3-1 Comparison of "Curriculum '68" and "Curriculum '65".. 38

3.2 Structure of the CurriculuUmMecsecescscesceccsesossesse 45

Introduction

"Curriculum '68', Recommendations for Academic Programs
in Computer Science, A Report of the ACM Curriculum Committee
i _ on Computer Science” [58] has served a critical role in the
development of computer science education, establishing the
field as an academic discipline and providing a framework
for the description of courses and programs.

i Current textbooks in computer science contain statements
-such as: "Specifically the 'Curriculum '68' report of the
ACM Committee explicitly recommends course B3, 'Introduction
to Discrete Structures' which has strongly influenced this
book not only in title but also in selection of topics™,
; "In fact the book covers all the topics (and more) listed
é for the course I5 (Compiler Construction) recommended by
! the ACM Curriculum Committee in the March 1968 issue of

the Communications of the ACM"™2, and M"the book is written

to follow the course description developed by the Association

for Computing Machinery (ACM), published in the March 1968

issue of the Communications of the ACM"3. In addition,

at least one publisher has superimposed his titles in the

i 1. Franco P. Preparata and Raymond T. Yeh, Introduction
to Discrete Structures (Addison-Wesley, Reading, Massachusetts,
1973), p. V.

2. David Gries, Compiler Construction for Digital Computers
(John Wiley and Sons, New York, 1971), p. vii.

3. Richard C. Dorf, Introduction to Computers and Computer
Science (Boyd and Fraser Publishing, San Francisco, 197%5,
PD. 1X-X. '

‘vi

prerequisite chart found in "Curriculum '68" to establish
to the user where the texts fit into the curriculum.?

References to "Curriculum '68" are not, however, limited
to publishers. At a recent national meeting of computer
professionals,> in announcing faculty openings, several
institutions referenced courses to be taught by the course
numbers of "Curriculum '68". The literature»of computer
science education also abounds with references to the report
such as: ™the Undergraduéte program includes courses roughly
equivalent to most courses in 'Curriculum '68'"6, "Table 2
shows a comparison of the subject areas emphasized in the ACM
1968 Recommendations for Academic Programs in Computer
Science"’, and "The courses B3, I6, and I7 above have been
remarkably stable perhaps because of the relative distance
of their content from the frontiers of research. Perhaps
some minor changes might be considered: course B3 could
include some material on the first-order predicate calculus
rather than just the propositional calculus, and course 17
still lacks a textbook which is teachable and has a good

balance between intuition and rigor. Nevertheless, the 1968

4, See the 1973-4 McGraw Hill catalogue of books in computer
science.

5. 1974 Computer Science Conference, Detroit, Michigan,
Febrvary 11-14, 1974.

6., J. Tartar and J. P. Penny, "Undergraduate Education in
Computing Science - Some Immediate Problems", SIGCSE Bulletin,
4, 1 (March 1972), 1.

7. George A. Mapp, "M Proposal for a B. S. in Information
Systems", SIGCSE Bulletin, 5, 1 (February 1973), 92.

ek s T . e

j
i
4

vii

descriptions of these courses are still a very good approximation
to current course offerings in a number of university and
college departments of computer science".8
In this study, the development of "Curriculum '68",
the impact of the recommendations, and subsequent developments
in computer science education will be considered. From this
study of "Curriculum '68" with a perspective of six years of
implementation and experience, a sense of why the recommendations
developed as they did wiil be determined, as well as an
identification of the strengths and weaknesses of the document.
The study will have two contributions to the field of
computer science education; the first in curriculum development,
and the second in curriculum implementation.
Regarding curriculum development, "Curriculum '68"
in its present form has been available for six years. Its
origins can be traced back further. For some time requests
for updates and revisions reflecting changes in technology,
and experience in offering instruction in computer science
have been made, but such revisions have not come about on
any major scale. Specific requests for such updates have
come from the IFIP World Conference on Computer Education

19709 and the attendees of the ACM Institute on Computer

8. P. C, Fischer, "Theory of Computing in Computer Science
Education", Proceedings of the AFIPS 1972 SJCC (AFIPS Press,
Montvale, New Jersey, 1972), 857,

9. Reported by W. F. Atchison at C38 meeting 1971 RJCC.

viii
Science Education.l0 This study will isolate those areas
in need of revision and updating, and thus serve as the
groundwork necessary for the revision of "Curriculum '68".

Regarding curriculum implementation, the study will
supply a means of interpretation of "Curriculum '68", as
well as a source of additional materials regarding curriculum
work and implementation. In this way, the study will be
useful to those institutions which are in the process of
just beginning programs in computer science, or are antici-
pating beginning such programs.

The study uses "Curriculum '68" as its primary source
document. The earlier report of the ACM Curriculum Committee
on Computer Science L[57] is also considered, as are reports
related to the other curriculum activities within ACM. In
; addition the literature of computer science education appearing
in professional journals, conference proceedings and informal
publications of special interest groups are considered.
Minutes of meetings of the ACM Curriculum Committee on
Computer Science subsequent to the publication of the report
} and several unpublished reviews of curriculum implementations
are also reviewed.

In chapter 1 the "Curriculum '68" report itself is

reviewed. Primary emphasis is placed on the descriptive

material such as the subject classification and the program

description. Chapter 2 considers reviews and critiques

10. Reported at evaluation meeting of the Institute, August
1971,

‘ix
of the report which appeared immediately following its
publication. Chapter 3 considers the relationship of "Curriculum
'68™"™ to the earlier works of the ACM Curriculum Committee on
Computer Science, and to curriculum work in computing carried
on in the same time period by the COSINE Committee of the
Commission on Engineering Education and the Committee on the
Undergraduate Program in Mathematics of the Mathematical

Association of America.

While the first three chapters are concerned with "Curriculum

'68", the material leading up to it, and, work parallel to it,

chapters 4, 5, and 6 look at implementation and subsequent
work. In chapter 4 the relationship of existing programs to
the recommendations are considered. Three studies involving
what is being offered in computer science as well as three
reports on the reactions of graduates of such programs to
the programs are reviewed. In chapter 5 work in specific
courses, both those recommended in "Curriculum '68" and
other courses are considered. In chapter 6, subsequent work
of the Curriculum Committee on Computer Science, its sub-
comnittees, and other groups involved in curriculum work
in computer science is presented.

Chapter 7, utilizing the information of the first
six chapters, summarizes and assesses the impact of "Curriculum
'68", Strengths and weaknesses of the report are indicated;
ways in which subsequent work meets these weaknesses is shown;
and appropriate areas for future work in curriculum development

are identified.

sl At .

Chapter 1 - Overview of "Curriculum '68"

This report contains recommendations on academic
programs in computer science which were developed by
the ACM Curriculum Committee on Computer Science. A
classification of the subject areas contained in computer
science is presented and twenty-two courses in these
areas are described. Prerequisites, catalog descriptions,
detailed outlines, and annotated bibliographies for
these courses are included. Specific recommendations
which have evolved from the Committee’s 1965 Preliminary
Recommendations are given for undergraduate programs.
Graduate programs in computer science are discussed
and some recommendations are presented for the development
of master's degree programs. Ways of developing guidelines
for doctoral programs are discussed, but no specific
recommendations are made. The importance of service
courses, minors and continuing education in computer
sciences is emphasized. Attention is given to the organi-
zation, staff requirements, computer resources and other
facilities needed to implement computer science educational
programs .-

This abstracts "Curriculum '68" [58]. 1In this study
the impact of this major report of the Curriculum Committee
on Computer Science (C38) of the Association for Computing
Machinery (ACM) will be considered for its impact on computer
science education. To do this the report itself must be
reviewed and this will be done in this chapter. While the
most attention has been given over the years of the life of
the report, to the course descriptions and prerequisite
structure of "Curriculum '68", the report encompasses a great
deal more.

The major sections of the report are a subject classifica-

tion of computer science, description of courses, undergraduate

1. Curriculum Committee on Computer Science, "Curriculum '68,
Recommendations for Academic Programs in Computer Science”,
Communications of the ACM 11, 3 (March 1968), 151.

1
i
i
¢
4
4

3 Tt e =

programs, master's degree programs, doctoral programs, service
courses, minors and continuing education, and implementation.
This is followed by the more detailed course outlines and
bibliographies. It must be observed that the recommendations
are limited in scope and objective and this is clearly stated

at the outset:

.« .these recommendations are not directed to the
training of computer operators, coders, and other
service personnel. Training for such positions, as
well as for many programming positions, can probably

~ be supplied best by applied technology programs, vocational
institutes, or junior colleges. It is also likely
that the majority of application programmers in such
areas as business data processing, scientific research,
and engineering analysis will continue to be specialists
educated in the related subject matter areas, although
such students can undoubtedlg profit by taking a number
of computer science courses.

The justification for the existence of computer science
as an academic discipline was covered in the earlier reports
of ¢33 [57]. M"Curriculum '68" does not attempt to repeat
this, but rather defines computer science in terms of three

major subject areas:

Subject Areas of Computer Science3
I. Information Structures and Processes
1) Data Structures
2) Programming Languages
3) Models of Computation
ITI. Information Processing Systems
1) Computer Design and Organization
2) Translators and Interpreters
3) Computer and Operating Systems
4) Special Purpose Systems
III. Methodologies
1) Numerical Mathematics

2. 1bid., 154.

30 Ibida, 154"155.

LR g AL el e e B Pt

b2
13
K
]
e

9)
10)

Data Processing and File Management
Symbol Manipulation

Text Processing

Computer Graphics

Simulation

Information Retrieval

Artificial Intelligence

Process Control

Instructional Systems

It is further noted that there are a number of related areas

essential to a balanced computer science program. Work in

the specific areas of "mathematical sciences" and "physical

and engineering sciences” warrented inclusion within the

‘classification:

IV. Mathematical Sciences

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)

Elementary Analysis

Linear Algebra

Differential Equations
Algebraic Structures
Theoretical Numerical Analysis
Methods of Applied Mathematics
Optimization Theory
Combinatorial Mathematics
Mathematical Logic

Number Theory

Probability and Statistics
Operations Analysis

V. Physical and Engineering Sciences

General Physics

Basic Electronics

Circuit Analysis and Design
Thermodynamics and Statistical Mechanics
Field Theory

Digital and Pulse Circuits

Coding and Information Theory
Communication and Control Theory
Quantum Mechanics

It is interesting to note that C3S did not consider material

dealing with things like sociological, economic, and educational

imﬁlications of developments of computer science, feeling that

these areas were more within the realm of interests of philosophy

and sociology departments who should develop such course
work in cooperation with computer scientists.

To meet the educational needs of computer science
twenty-two courses are specified, each carrying three semester
hours credit. These courses are divided into basic (freshman-
sophomore level), intermediate (junior-senior or beginning
graduate level), and advanced:

The Courses of "Curriculum '68"4
Basic Courses
Bl) Introduction to Computing
B2) Computers and Programming
B3) Introduction to Discrete Structures
B4) Numerical Calculus
Intermediate Courses
I1) Data Structures
‘I2) Programming Languages
: I3) Computer Organization
H I4) Systems Programming
I5) Compiler Construction
I6) Switching Theory
I7) Sequential Machines
I8) Numerical Analysis T
19) DNumerical Analysis II
/ Advanced Courses
i Al) Formal Languages and Syntactic Analysis
‘ A2) Advanced Computer Organization
; A3) Analog and Hybrid Computing
A4) System Simulation
A5) Information Organization and Retrieval
i A6) Computer Graphics
g A7) Theory of Computability
¥ A8) Large-Scale Information Processing Systems
; A9) Artificial Intelligence and Heuristic
Programming

In terms of the subject matter classification cited
above, the courses can be listed by category as.follows,

recognizing, of course, that some of the courses cross

Z. Ibid., 156-160.

classification boundaries:

Information Structures ard Processes
Bl) Introduction to Computing
B2) Computers and Programming
B3) Introduction to Discrete Structures
Il) Data Structures
I2) Programming Languages
I6) Switching Theory
I7) Sequential Machines
Al) Formal Languages and Syntactic Analysis
A7) Theory of Computability
Information Processing Systems
I3) Computer Organization
I4) Systems Programming
I5) Compiler Construction
A2) Advanced Computer Organization
A3) Analog and Hybrid Computing
! Methodologies
! B4) Numerical Calculus
; I8) Numerical Analysis I
I9) Numerical Analysis II
B4) System Simulation
AS5) Information Organization and Retrieval
A6) Computer Graphics
A8) Large-Scale Information Processing Systems
A9) Artificial Intelligence and Heuristic
Programming

The special place of mathematics is recognized, with
reference specifically to the reports of the Committee on
the Undergraduate Program in Mathematics (CUPM) A General

Curriculum in Mathematics for Colleges [40], Recommendations

i on the Undergraduate Mathematics Program for Engineers and

Physicists [42], and A Curriculum in Applied Mathematics [41].

A parallel structure in mathematics within the structure of

prerequisites for computer science is given in the report.
A detailed prerequisite structure is given, however,
it is noted that other structures are possible, and that

the given structure will likely change as the field advances.

In the case of the advanced courses, the structure is

W

T
o

especially open to modification based on the -orientation

of the program.

N SRR SN

Within the structure, of particular interest, is the
i collection of computer science and mathematics courses that

4 are considered the "core" of computer science:

5 Core of Computer Science>
Computer Science Courses
Bl) Introduction to Computing
B2) Computers and Programming
B3) Introduction to Discrete Structures
B4) Numerical Calculus
I1) Data Structures
I2) Programming Languages
I3) Computer Organization
I4) Systems Programming
i Mathematics Courses (Referenced to CUPM)
i M1) Introductory Calculus
i M2) Mathematical Analysis I
M3) Linear Algebra
M2P) Probability

With the core specified, the report turns to the definition
of an undergraduate program in computer science. In the

specification of the program, which c3s felt helped mark

o e Ly 0 b B ez b ek ke e

computer science as an established field of study, efforts
were made to integrate basic concepts of computer science
with professional techniques.

The committee observed that professionals were divided

e bink 0 s et R ean s e

; as to whether or not undergraduate programs should be started
at the time of the writing of the report, and although
recommending in favor of such program, a warning was sounded

against allowing the glamor of the field from leading to

Tt e e L b S B S

the premature establishment of programs and thus lowering

5, 1bid., 157.

;

Eapds

AN L LSRR

PEERATENS AR

RS et

m‘;};_"_{.‘.ﬂg\v,u‘4 ORI

of standards. The program leading to the undergraduate
degree was stated in terms of the various aspects of professional
development; computer science course work, programming
experience, mathematics course work, technical electives,
and possible areas of specialization.

The computer science courses recommended for the under-
graduate program were to establish the groundwork in the
field. These courses, selected from the basic and intermediate

list, concentrate on the divisions of information structures

“and processes, and information processing systems:

The Undergraduate Program6
The major in computer science should consist of
at least 30 semester hours including the courses:
Bl) Introduction to Computing
B2) Computers and Programming
B3) Introduction to Discrete Structures
B4) Numerical Calculus
I1) Data Structures
I2) Programming Languages
I3) Computer Organization
I4) Systems Programming
and at least two of the courses:
I5) Compiler Construction
I6) Switching Theory
I7) Sequential Machines
I8) Numerical Analysis I
I9) Numerical Analysis II

Programming experience was not regarded as the primary
objective of the undergraduate program, however, it was
anticipated that it would be an achievement of such a program,
both through course work, and some form of "true-to-life'

programming within the program.

6. 1bid., 161.

ARSI

Mathematics was regarded as essential. 1In effect a
strong minor was recommended, selected from courses from
the CUPM Curriculum Recommendations [40]:

Mathematics Course for the Computer Science Undergraduate
Program/ '
The supporting work in mathematics should consist
of at least 18 hours including the courses:
M1) Introductory Calculus
M2) Mathematical Analysis I
M2P) Probability
M3) Linear Algebra
and at least two of the courses:
M4) Mathematical Analysis II
M5) Advanced Multivariate Calculus
M6) Algebraic Structures
M7) Probability and Statistics

Students were encouraged to take technical electives
in computer science or related fields. It was suggested
that not more than three additional computer science courses
be taken to avoid problems of overspecialization. The use
of the technical electives was considered especially valuable
when the courses were combined with the optional computer
science courses and electives from outside areas to give
degrees of specialization in certain areas:

Examples of Course Selection for Areas of Specialization8
Applied Systems Programming
Optional courses
I5) Compiler Construction
I6) Switching Theory
Electives from courses
A2) Advanced Computer Organization
AS5) Information Organization and Retrieval
A6) Computer Graphics
Electives from areas
Iv.8) Combinatorial Mathematics

7. 1bid., 162.

8. Ibid.

R R A L bt e

Iv.9) Mathematical Logic
Iv.11) Probability and StatlSthS
IV.12) Operations Analysis
Computer Organization and Design
Optional courses
I6) Switching Theory
I7) Sequential Machines
Electives from courses
A2) Advanced Computer Organization
A8) Large-Scale Information Processing Systems
A4) System Simulation
Electives from areas
IV.3) Differential Equations
V.2) Basic Electronics
V.6) Digital and Pulse Circuits
V.7) Coding and Information Theory
Scientific Applications Programming
Optional courses
I8) Numerical Analysis I
I9) Numerical Analysis II
Electives from courses
A3) BAnalog and Hybrid Computing
‘A4) System Simulation
A5) Information Organization and Retrieval
A6) Computer Graphics
Electives from areas
IV.3) Differential Equations
IvV.7) Optimization Theory
V.4) Thermodynamics and Statistical Mechanics
V.5) Field Theory
Data Processing Applications Programming
Optional courses
I5) Compiler Construction
I6) Switching Theory
Electives from courses
A4) System Simulation
A5) Information Organization and Retrieval
A8) Large-Scale Information Processing Systems
Electives from areas
Iv.7) Optimization Theory
IV.11l) Probability and Statistics
Iv.12) Operation Analysis
V.7) Coding and Information Theory

The discussion of the undergraduate program concludes
with a set of semester by semester sequences of courses,
showing how workable programs can be fit into a four year

sequence.

I NP S VT TR NI s N B

A i o

O USRI

10

The master's degree program recommended by the committee

contains the following statement of purpose:

The proposed program embodies sufficient flexibility
to fulfill the requirement of either an "academic"
degree obtained in preparation of further graduate
study or a terminal "professional” degree. Until
clearer standards both for computer science research
and the computing profession have emerged, it seems
unwise to attempt to distinguish more definitely between
these two aspects of the master's degree programs.?

The program description first considers the necessary

undergraduate background:

Undergraduate Preparationl0

The recommended preparation for graduate study
in computer science consists of three parts as listed
below. The course work which would provide this
background is indicated in parentheses.

a. KXnowledge of computer science including
algorithmic processes, programming, computer
organization, discrete structures and numerical
mathematics (courses Bl, B2, B3, and B4 or I8).

b. Xnowledge of mathematics, including the
calculus and linear algebra, and knowledge
of probability and statistics. (courses M1,
M2, M3, M4, M2P, M7 of CUPM)

c. Additional knowledge of some field such as
computer science, mathematics, electrical
engineering, physical science, biological
science, linguistics, library science, or
management science which will contribute to
the student's graduate study in computer
science. (Four appropriate courses on an
intermediate level.)

The program is described in general terms:

The Master's Degree Programll

The master's degree program in computer science
should consist of at least nine courses. Normally
at least two courses, each in a different subject

9.
10.

11.

Tbid., 164.
Ibid., 163.

Ibid.

P e et el A S LA e 2 s i o s

RSSO

11

area, should be taken from each of the following
subject divisions of computer science:
I. Information Structures and Processes
II. Information Processing Systems
I1I. Methodologies
Sufficient other courses in computer science or related
areas should be taken to bring the student to the fore-
front of some area of computer science,

The program was then to have degrees of both breadth and depth;
the breadth from the requirement for at least two courses in

each of the three major subject divisions of computer science, and
the depth from the selection of courses to bring the student to
the state of the art in some area of computer science. The
special place of mathematics was noted here as in the under-
graduate program with the recommendation that the student who
does not have a "strong” mathematical background take additional

mathematics courses or computer science courses with a high

mathematical content.

The following are examples showing how the requirements
for the program can be pulled together to form an area of
specialization. The numbers here refer to subject areas:

Possible areas of Specialization in the Master's Program12
Theoretical Computer Science
I.1) Data Structures
I.2) Programming Languages
I.3) Models of Computation
IIT.3) Symbol Manipulation
III.8) Artificial Intelligence
IvV.8) Combinatorial Analysis
IV.9) Mathematical Logic
V.7) Coding and Information Theory
Applied Software
I.1l) Data Structures
I.2) Programming Languages
II.1) Computer Design and Organization
II.2) Translators and Interpreters
II.3) Computer and Operating Systems

17. 1bid., 164.

DTNV RS MR S PO WS IR VS S Yol

III.3) Symbol Manipulation
ITT.6) Simulation
IV.9) Mathematical Logic

Applied Hardware

I.1) Data Structures
I.3) Model of Computation
II.1) Computer Design and Organization
II.3) Computer and Operating Systems
III.5) Computer Graphics
Iv.7) Optimization Theory
Iv.9) Mathematical Logic
V.6) Digital and Pulse Circuits
V.7) Coding and Information Theory
Numerical Mathematics
I.1) Data Structures
I.2) Programming Languages
II.1l) Computer Design and Organization
II.3) Computer and Operating Systems
IIT.1) Numerical Mathematics
ITI.6) Simulation
IV.5) Theoretical Numerical Analysis
IV.6) Methods of Applied Mathematics
IV.9) Optimization Theory
Instrumentation
I.1) Data Structures
I.2) Programming Languages
ITI.1) Computer Design and Organization
IT.4) Special Purpose Systems
ITI.6) Simulation
IIT1.9) Process Control
Iv.6) Methods of Applied Mathematics
Iv.7) Optimization Theory
V.8) Communication and Control Theory

Information Systems

I.1) Data Structures

I.2) Programming Languages

IT.1) Computer Design and Organization

IT.3) Computer and Operating Systems
III.2) Data Processing and File Management
ITI.4) Text Processing
ITI.7) Information Retrieval

Iv.7) Optimization Theory

IV.9) Mathematical Logic

Though a master's project or thesis was not specified
as such in the report, the recommendation was given that
some requirement be made to insure that the student gains

experience in computer applications at the level of a major

12

13
project.
The doctoral program is not specified in any way in
the report. The committee did consider ways in which guidelines
could be developed, and acknowledged that many of the problems
of doctoral programs were addressed at the Stony Brook
Conference [741. A series of articles on doctoral programs

were, at the time, scheduled to appear in the Communications

of the ACM, which would discuss, in depth, various aspects

of such programs. Among the topics to be addressed in these

-articles were the following:13

1) Definition of subject areas, possibly in terms of
an annotated bibliography.

2) Prerequisites for work in the area at the doctoral
level.

3) Outlines of appropriate graduate courses in the area.
" 4) Examples of questions for qualifying exams in the area.
5) Indication of suitable thesis topics and promising
directions for research.
6) Extent to which subject areas ought to be required
of all doctoral students in computer science.
The matters of service courses, minors, and continuing
education which are so necessary in any field are addressed
in the report. The need for service courses is spelled out
in terms of the recommendations of the Pierce Committee [1501.
For the student, referred to in the Pierce Report, as being
in the more quantitative fields, course Bl is recommended
with course B2 or B4 serving as a second course. It was

also observed that the interested student could easily pick

a minor out of the other courses in the recommended curriculum.

13, Ibid., 165,

a0 s Vet L e

14
A slight realignment of course Bl, to stress applicatiéns
in text processing and non-numeric areas was recommended
for other students. It was observed that care should be taken
in the design of such a course to be sure that a student
completing it could take additional work, like courses B2
and B3, if he so desires. It was also felt desirable by
the committee to consider introducing a survey course with
primary attention to the implications of computer technology,
though such a course itself was not outlined.

It was the belief of the committee that the service
course be offered by the computer science department, however,
it was stressed that the department must, at all times, be
sensitive to the needs of the various users.

The needs for programs in continuing education were
addressed in the report, though no firm recommendations for
courses in this aspect of computer science education were given:

Finally, the need for continuing education in
computer science must be recognized. Much of the course
material discussed in this report did not exist 10-15
years ago and practically none of this material was
available to students until the last few years. Anyone
who graduated from college in the early 1960's and
whose "major" field of study is related to computing
is already out-of-date unless he has made a determined
effort to continue his education. Those responsible
for academic programs in computer science and those
agencies which help to direct and support continuing
education should be especially alert to these needs
in this unusually dynamic and important field.

The final section of the report deals with the problems

of implementation of computer science programs. The committee

T4. 1Ibid., 166.

15
looked for diffusion and chaos if computer science departments
were not formed and instead courses in computing developed

all over the campuses:

The organizational problems for this new field are
serious and their solution will inevitably require new
budget commitments from a university. However, failure
to come to grips with the problem will probably prove
more costly in the long run: duplicated courses and
programs of diluted quality may result, and a major
upheaval may eventually be required for reorganization.lS

Perhaps the most critical organizational problem in

the development of computer sciences departments was acquisition

of staff. The committee recognized that initially people

would come into the programs with a variety of formal back-
grounds in related areas like mathematics or electrical engineer-
ing, however, it was felt essential that this faculty consider
itself composed of computer scientists. While joint appointments
were felt desirable in some cases, it was considered important
that a substantial part of the faculty be fully committed
to computer science. It was observed that a critical size,
probably 5 full time equivalents, is necessary for a reasonable
coverage of the areas of computer science. It was also
observed that due to the lack of teaching materials, assignments
of the faculty should be such that time is available for
the faculty to develop teaching materials.

The committee considered computer science as a laboratory
science as far as physical facilities are concerned, and

recommended that facilities be available for card preparation,

15. 7Ibid.

PN PSR TIG:

4

&
&
3
:
i
i
g1
i
i

16
study of listings and so on. In addition to the usual library
facilities needed for all disciplines, it was observed that
facilities for holding and using research reports, manuals,
and programs would be necessary. Reference was also made
to computing facilities:

Degree programs require regular access to at least

a medium-size computer system of sufficient complexity

in configuration to require the use of an operating

system. The total cost of such systems are at least

$20,000 per month. In terms of hours per month, the
machine requirements of computer science degree programs
will vary according to the number of students enrolled,
the speed of the computer and the efficiency of its
software, and the philosophy of the instructors. It

is entirely possible that an undergraduate degree program

might require as much as four hours_of computing

on a medium-sized computer per day.

In addition to these considerations, adequate space and good
turn around from the computer center were stressed.

It was observed that the study of systems programming
would require special facilities and possibly separate
equipment. In advanced programs, additional equipment was
also anticipated for such things as graphics, numeric control
of machines, process control, simulation, information retrieval
and computer-assisted instruction.

The existence of a strong computer science program on
campus, should enhance the programs and activities of the

computer center, even though the two are separate entities.

The report does stress that these activities should be closely

associated:

16. ibid., 167.

|

LTI TR

17

It should be realized, however, that the basic
philosophies of providing services and pursing academic

ends differ to such an extent that conflicts for attention

may occur. At one extreme, the research of a computer
science faculty may so dominate the activities of the
computer center that its service to the academic community
deteriorates. At the other extreme, the routine service
demands of a computer center may inhibit the faculty's

ability to do their own research, or the service orientation

of a center may cause the educational program to consist
of mere training in techniques of only transient value.
Considerable and constant care must be taken to maintain
a balance between these extremes.l7

Summarz

"Curriculum ‘68" gives detailed specifications for

twenty-two courses fundamental to the study of computer

science, as well as putting these courses into a prerequisite
structure that also involves mathematics.

While the questions of definition and justification of
computer science are not addressed, the subject matter is
classified into three major areas of computer science and
two related areas. A core area is defined, and based on this
core area the undergraduate program is detailed involving
computer science courses, mathematics courses, and technical
electives.

Graduate degree programs are mentioned but not detailed
to the extent of the undergraduate program. The master's
program is outlined in terms of areas while doctoral programs
are only mentioned in general terms, with ideas put forth

for further work.

17. ibid., 168.

18
Additional topics receive some attention, these including

service courses and minors, continuing education programs,

program implementation problems, and facilities.

RN

T e A e & i s et e

T v e

e

I}j
i

19

Chapter 2 - Critiques of "Curriculum '68"

Since the publication of "Curriculum '68", a great
deal has been said about it, both pro and con, and its
influence is seen in many descriptions of courses and programs.
At the same time, however, suprisingly little has appeared
in the literature which directly analyzes or critiques the
recommendations. The period immediately preceeding, and
immediately following the publication of "Curriculum '68"
produced several reviews and critiques which give a good
deal of insight into the role and nature of the document,
and in many ways put into writing those things which have
been subsequently said. In this chapter several of these
documents will be considered.

In June 1968 "Curriculum '68" was independently reviewed
by E. I. Organick [144], R. T. Gregory [92], and S. Rosen [1551.
The reviews were uniformly positive toward the report with
a typical statement being that of Organick:

This outstanding repor. will serve as a landmark
contribution of ACM and NSF to educators seeking to
es?ablish useful programs and_cour§es in comEuter
science at the college and university level.

Rosen also stresses the value of the report to those establishing
programs noting that the report will be of special value to
those who have not been deeply involved in the early developments

in computer science, but want to develeop and offer a program.

1. E. I. Organick, "Review of Curriculum '68", Computing
Reviews (Review Number 14,389) 9, 6 (June 1968), 303.

L AL L

20
He too notes that "Curriculum '68" can form the basis for the
curriculum even in the case where individual institutions
might wish to make a number of changes in the actual program
they offer.

Within all the reviews there are some expressions of
concerns. Organick was concerned that the report might serve
as too much of a blueprint for all computer science education:

The only major reservation this reviewer would have
is that the report could be regarded as too good...less-
than-fully imaginative educators might be tempted to
urge accreditation of B. S. programs based on proximity
to the applied model.2

Rosen expresses another item as his major concern:

Perhaps my strongest criticism of the work of

the Curriculum Committee is that it seems to give

insufficient emphasis to the interdisciplinary aspects

of computer science.3

Other items were expressed which were of some concern
to the reviewers. Organick was concerned over the fact that
there was little experience by the members of the Curriculum
Committee in the running of the programs they were recommending.
He was also concerned with the interrelationship of calculus
with the computer science core courses, and especially
I2 - Programming Languages, I3 - Computer Organization, and
I4 - Systems Programming.

Gregory's only specific concern was with the fact that

the area of theoretical numerical analysis was grouped under

3. Ibid., 304.

3. 8. Rosen, "Review of Curriculum '68", Computing Reviews
(Review Number 14,391) 9, 6 (June 1968), 305.

21

the mathematical sciences as a '"related” subject area rather
than directly in computer science.

Rosen notes that in many ways the curriculum recommendations
represents the point of view of those who have come into computer
science from mathematics and that the program is highly
oriented to mathematics. He notes that while the bibliographies
for the courses are extensive they do fall into the trap of
containing some irrelevant and poor quality material.

Rosen notes the significance and importance of the Data
‘Structure area specified in "Curriculum '68", however, he
did have some reservations as to the course as described:

There is no question in my mind as to the importance
of the topics listed as the subject matter of this course.

Every computer scientist should know much of this material,

but I do not see how that particular collection of
material can be organized into a course for college

undergraduates.
In spite of his several objections, however, Rosen does
conclude that the report is most valuable:
Although this reviewer has a few reservations and
criticisms, the report represents a most important
and useful document, and the committee that produced
the report deserves the thanks of all of us who are
interested in curriculum problems in computer science.>
In 1967, the Association for Educational Data Systems
(REDS) held a conference on the Computers in American Education.
Though this conference was primarily devoted to educational

use of computers and not computer science education, there

are references to the latter area. Sylvia Charp [35] describes

4. Tbid., 306

5. 1Ibid.

i i

A

v—————v
1

k 1

1]

22
courses designed for secondary school students and addresses
some of the problems of teacher training, while John Caffrey [34]
expresses some commonly held ideas that spawned the development
of computer science instruction:
.+ .As the number of users, especially students, grows
and grows (not just in mathematics and the hard sciences),
the need for easier access via remote terminals and
more effective operating systems, with short turnaround,
grows insistently. One even begins to hear it said that
in the humanities and liberal-arts program there is
growing realization that the citizen of tomorrow had
better know as much as he can about computers.
Hence the demands for instruction in computer
science grows apace. It is possible to find in college
catalogues across the country a great variety of courses
designed for special purposes; the engineer and the
business administrator apparently need different kinds
of courses in programming; there are courses covering
the general functions of computers, the design of computers,
computers in system analysis, and so on. It is hard
to find a discipline in which the computer has not
obtruded, even in art and music.b
The most relevant article to computer science education,
of this collection is by Ottis W. Rechard [153]. Though
written before the formal publication of "Curriculum '68",
it was written with a knowledge of what would be in the
document, and expresses many of the concerns and objections
that were aired subsequent to publication.

Rechard traces the development of computer science
education noting that at the time of writing there were at
least thirty-three institutions offering some kind of program

in the field. He notes that these programs vary a great

6. John Caffrey, "Computers in Higher Education", in D. D.
Bushnell and D. W. Allen (eds.), The Computer in American
Education (John Wiley and Sons, New York, 1967), p. 220.

LF
i
4

23

deal, and that at the time of writing, it is difficult to

identify a common basis for an undergraduate program:

The diversity among these curricula is very great
indeed, reflecting at this point little uniformity of
opinion as to what represents adequate academic training
in computer or information science. Beyond some basic
instruction in algorithmic processes and a procedure-
oriented language (usually FORTRAN or ALGOL), some
numerical analysis and some systems programming, it is
difficult to find a common element. For this and other
reasons, the numerous attempts to establish undergraduate
majors in computer science seems premature and misguided.
At a time when the field is still struggling with problems
of identity, it does not seem fair to the undergraduate
student to encourage him in the belief that a degree in
computer science will mean as much as a degree in one
of the more established disciplines. After all, it is
reasonable to expect that two students majoring in
mathematics at different universities will each have
been exposed to a rather large common body of knowledge.
The same is true of physics, biology, and electrical
engineering, but it is definitely not true of computer
science.’

Rechard goes on to specifically raise questions regarding

the report of C3S:

In an attempt to deal with this problem, the ACM
Curriculum Committee has recently proposed a curriculum
for an undergraduate major in computer science. While
there is much to applaud in this effort, many of the
recommendations are nevertheless puzzling. Why, for
example, should a course in "combinatorics and graph
theory™ be listed as a basic course in computer science-
while courses in "linguistics" and "analog computers"
are included in a list of supporting courses? The
catalog descriptions of certain of the courses can cause
some confusion. In addition, if one regards courses
such as "numerical analysis", "mathematical optimization
techniques" and "constructive logic™" as belonging as
well to mathematics as to computer science, the proposed
curriculum seems really to represent a sound major in
mathematics with options in computation, such as has

Ottis W. Rechard, "The Computer Sciences in Colleges and

Universities"”, in D. D. Bushnell and D. W. Allen (eds.) The

Computer in American Bducation (John Wiley and Sons, New
York, 1967), pp. 157-158.

24

been described by Perlis in the Communications of the
ACM.

It is noted that much of the pressure to offer undergraduate
programs in computer science had come from the fact that
mathematics departments had been reluctant to consider offering
applied programs.

Though Rechard was against the formation of undergraduate
programs in computer science, he was not against graduate
programs or the offering of undergraduate courses:

This qualified view of undergraduate majors in
computer and information science should not be interpreted
as opposition to undergraduate courses in the subject.
Perhaps the most satisfactory arrangement at the present
time is a department of computer and information science
which offers a master's and Ph. D. degree and teaches
a number of undergraduate courses, so that students
can acquire background in the subject ranging from
simple experience with a procedure-oriented programming
language to familiarity with compiler and operating
system construction.

In September 1968 a Conference was held, with the support
of The National Science Foundation at Park City, Utah on
Computers in Undergraduate Education [1781. The conference,
chaired by William Viavant was concerned with the general
issues of computers in undergraduate education, but in large
measure, addressed itself to computer science education,
and interpretation of "Curriculum '68":

The real objective of the conference was to stir

things up. A casual reading of the report of the ACM
Curriculum Committee, "Curriculum ‘68" might give to

§. 1Ibid., p. 158.

9, Ibid.

A

25

a naive college administrator a feeling that the problems
have been studied and solved, and that a school need

only follow the recommendation of the report. If this
conference persuaded even a few participants that they
must themselves contribute to the creative use of
computers in education, that there are serious problems

in such a rapidly changing field, but exciting opportunity
as well, and that any formula or program currently
specified, should be used only as a skeleton at best,

then it has been of value.l0

An interesting presentation was made at this conference
by Sam Conte on the "History and Activities of the ACM
Curriculum Committee" [45]. After discussing some of the
history of the committee, he turns to criticisms. First
the question of the composition of the committee itself

is addressed:

Various criticisms have been leveled at the membership
on this committee. One is that most of the committee
were mathematicians by training. It is indeed true
that 8 of the 12 members are mathematicians, 2 are engineers,
and 2 are physicists. The composition simply reflects
that fact that, whatever the reason, most of the leaders
in computer science at that time were indeed trained
as mathematicians. A second criticism was that most
of the members were of the "Computing Center Director"
type whatever that might imply. At the time the committee
was formed 9 of the 12 members were Computing Center
Directors but of course, at that time academic programs
in computer science were almost non-existent and this
was the only avenue available to those who wanted to
maintain an interest in computing at universities.
It is interesting to note that only 2 of these same
members are now primarily directors of Computing
Centers. A third criticism was that the committee was
dominated by numerical analysts. Although 4 of the
committee members can be classified as numerical analysts,
it seems to me that the report places remarkedly little
emphasis on numerical analysis. Indeed, considering
the tremendous inefficiency of committee structures
in general and the divergent view points represented

10, William Viavant (ed.), Proceedings of the Park City
Conference on Computers in Undergraduate Education (The
University of Utah, Salt Lake City, 1969), p. 5.

26

by the committee, it seems to me quite remarkable
that we are able to come up with as well balanced a
document as I think the 68 report represents.ll

Criticisms directed to the report itself are noted
involving such matters as the amount of emphasis placed
on mathematics and the amount of emphasis placed on hardware.
There were also criticisms raised of a "philosophical'

nature:

The committee was criticized for not taking
positive and forceful positions on the following questions:

1) Is Computer Science a discipline in the
traditional academic sense? Does it have the cohesion
and intellectual depth normally associated with a
discipline? And closely related, should there be an
undergraduate program in computer science?

2) 1Is computer science a branch of mathematics,
or a branch of engineering or is it something else?

3) Where should computer science be located and
how should it be organized? Should computer science
be developed within existing departments such as mateh-
matics or engineering, and if so which? Should there
be separate departments of Computer Science? Or is
an Institute of Computer Science the best structure?l2

Conte claims that each of these questions were addressed

by the committee. The committee took a practical approach

to question 1 in that there was a need for education and

such courses and programs would come into existence. They
felt that Computer Science was a blend of engineering, mathe-
matics and other disciplines, as well, leading to a truly
distinct field worthy of study. They felt that computer

science should exist as an independent entity on campus.

11. Sam Conte, "History and Activities of the ACM Curriculum
Committee™, in William Viavant (ed.), Proceedings of the Park
City Conference on Computers in Undergraduate Education (The
University of Utah, Salt Lake City, 1969), pp. 39-40.

12. 1Ibid., p. 41.

27

Conte, and the committee, did not feel that the publication
of "Curriculum '68" ended work in the development of curriculum
in computer science:

...we feel that it would be a mistake for all

schools to attempt to implement these recommendations.

We do hope that they will provide guidelines for programs

in existence and for programs in the formative stages.

Because computer science is still in a rapidly changing

state and because we feel that curriculum is an evolving

process, the committee feels that a continuing body should
be established to constantly examine the development of
programs in the country. In addition to a continued
examination of curricular matters there are a number

of other aspects of computer science education which

our committee did not have time to explore.l3
Among the new problems to be addressed were programs for
smaller colleges, junior colleges and technical schools;
the relationship of computer science to other disciplines
including both those things computer science might offer
other departments in the university, and what the computer
science students would need from other departments; program
implementation problems and related cost; the development
of graduate programs; and course content development. In
addition it was anticipated that the curriculum committee
would sponsor a program of visitation and consultation to
further assist in the development of computer science programs.

Ever since the publication of "Curriculum '68" and the
development of academic programs in computer science, there

have been indications that industry has many misgivings

about such academic programs. Though there has been much

13. 1Ibid., p. 43.

A

28
said on these matters, not a great deal appears in the literature.
At the Park City Conference there was a session of industry
representatives and the comments of John E. Hale [94] of
Burroughs Corporation and Kay Magleby [125] of Hewlett-

Packard Company appear in the Proceedings. The remarks

of Hale in many ways reflects the stated views of many
representatives of industry:

It doesn't matter to me whether a person working
for us has a degree in computer science or mathematics
or chemistry or music, or English or whatever. As
a matter of fact, there are some very good people in
the systems programming area who don't have degrees
at all. But I think there is an opportunity for the
university or the college to provide some fundamental
knowledge to those who are interested in going into the
computer end of the business, the programming end.

But the colleges by and large have not fulfilled this
responsibility. I would like to have a person have

a fundamental acquaintanceship with what a machine is.
That, he can only obtain in my opinion, by actually
working with it. That is, he must have had the opportunity
to become intimate with the machine. Now it doesn't
really matter which machine it is, or whether it's a
poor or good machine, but he ought to be able to play
with it. To sit at the console and do things so that

he will understand how the machine really works....I
have interviewed people with degrees in computer science
who possessed varying degrees of competence. One, whom
I will never forget came with a Master's degree in
computer science from a large university, and I was
shocked to find out that all he knew about computers

was numerical analysis...he didn't have the slightest
understanding of what a machine was...I don't care
whether he knows the machine actually uses vacum tubes
or screws or bolts, that to me is not important. But

he must have an understanding of the functional operation
of the system.l4

Magleby in many ways reinforces these views however suggests

that computer science education cannot and should not try

14, John E. Hale, "Remarks by Representatives of Computer
Manufacturers", in William Viavant (ed.), Proceedings of the
Park City Conference on Computers in Undergraduate Education
(The University of Utah, salt Lake Clty, 1969), p. 107.

‘?
1
1
§
i
i
N [}
!

A

29
to duplicate industry's on the job training. Studies outside

of the area of computer science to round out an educational

program are stressed.

Marvin Minsky [140] delivered an invited address at
the Park City Conference. In his talk he stressed the basic
importance of computer science, however, he cautioned against
too fast a move into computer science, in particular if this
implies a movement away from mathematics:

Now, of course there are different needs of students.
I can't help being interested in students who are going
to be the next generation's theorists and contribute
to the theory. For them I regret to say that the best
curriculum for computer science is a course in pure
mathematics, on the grounds that the mathematical
theories have stood the test of time. We have found
that they are powerful and useful in developing new
theories in computer science, whereas computer science
theories as of today are very superficial: they haven't
ramified. Nobody has found out what is important and
what isn't since the work of Chomski in the middle
50's and that theory is untested. So I think it is
important to keep in mind that if you have a student
who is obviously a theoretical type, he's going to
be a scientist, you should encourage him to take all
the mathematics he can: algebra, topology, things
like that. They won't be directly useful but he will
become a mathematician and a most powerful theorist in
general. Five years from now perhaps we will have the
computer science which will incorporate those parts of
mathematics that are going to be relevant. Right now
we can't tell what they are.l>

In working sessions of the Park City Conference there
was a workshop dealing with Curriculum and Programs chaired

by Earl Schweppe [1631. 1In the report of the workshop there

15, Marvin Minsky, "Speculations about Man and Machines",
in William Viavant (ed.), Proceedings of the Park Cit
Conference on Computers in Undergraduate Education (The
University of Utah, salt Lake City, 1969), pp. 150-151,

30
was a strong recommendation that most colleges and universities
should consider offering work in computer science approaching
a twelve to eighteen hour minor at a minimum. There were
also indications that roughly the core program of "Curriculum
'68" would fill this need.

In the 1968 ACM Turing Lecture R. W. Hamming [1021]
devoted a major portion of his remarks to computer science
education and "Curriculum '68". Hamming places somewhat
more emphasis on programming work than does "Curriculum '68":

Were I setting up a computer science program,
I would give relatively more emphasis to laboratory
work than does Curriculum '68, and in particular
I would require every computer science major, undergraduate
or graduate to take a laboratory course in which he
designs, builds, debugs, and documents a reasonably
sized program, perhaps a simulator or a simplified
compiler for a particular machine. The results would
be judged on style of programming, practical efficiency,
freedom from bugs, and documentation. If any of
these were too poor I would not let the candidate
pass. In judging his work we need to distinguish clearly
between superficial cleverness and genuine understanding.
Cleverness was essential in the past, it is no longer
sufficient.

I would also require a strong minor in some field
other than computer science and mathematics. Without
real experience in using the computer to get useful
results the computer science major is apt to know all
about the marvelous tools except how to use it. Such
a person is a mere technician, skilled in manipulating
the tool but with little sense of how and when to use
it for its basic purpose. I believe we should avoid
turning out mere idiot servants--we have more than
enough "computniks™ now to last us a long time. What
we need is professionals!

The Curriculum '68 recognized this need for "true-
to-life" programming by saying, "This might be arranged
through summer employment, a cooperative work-study
program, part-time employment in computer centers,

.31
special projects courses, or some other appropriate
means." I am suggesting that the appropriate means is
a stiff laboratory course under your own control, and
that the above suggestions of the Committee are rarely
going to be effective or satisfactory.l6
Hamming considers the question of how much mathematics

is necessary in a computer science curriculum. With some
reluctance, recognizing that many practitioners in the field
do not have strong backgrounds in mathematics and would in
the future be excluded by such requirements, he concludes
that with the present state of the art a good deal of mathematics
is necessary in the curriculum. This leads naturally to the
question of what mathematics. At least one course in numerical
analysis seems necessary, in addition topics like abstract
algebra, queing theory, statistics, probability, coding theory,
and graph theory are appropriate. He notes that with the

then current state of mathematics education, it would be
somewhat difficult for a student to pick up such material
without having to take a good deal more material which would
not be particularly relevant.

Hamming notes the problems voiced in the areas of business
applications and their relation to computer science instruction;
this in turn has application to all the disciplines which
use computing:

One of the complaints regularly made of computer

science curriculums is that they seem to almost totally
ignor business applications and COBOL. I think that

16. R. W. Hamming, "One Man's View of Computer Science”,
Journal of the ACM 16, 1 (January 1970), pp. 5-6.

A

32

it is not a question of how important the applications
are, nor how widely a language like COBOL is used, that
should determine whether or not it is taught in the computer
science department; rather I think it depends on whether
or not the business administration department can do

a far better job than we can, and whether or not what

is peculiar to business applications is fundamental to
other aspects of computer science. And what I have
indicated about business applications applies, I believe,
to most other fields of application that can be taught
in other departments. I strongly believe that with the
limited resources we have, and will have for a long

time to come, we should not attempt to teach applications
of computers in computer science departments - rather,
those applications should be taught in their natural
environments by the appropriate departments.l’

Hamming notes some of the concerns expressed by other
representatives of industry regarding the usefulness of some
university trained computer scientists:

At present there is a flavor of "game-playing"
about many courses in computer science. I hear repeatedly
from friends who want to hire good software people that
they have found the specialist in computer science is
someone they do not want. Their experience is that
graduates of our programs seem to be mainly interested
in playing games, making fancy programs that really
do not work, writing trick programs, etc. and are unable
to discipline their own efforts so that what they say
they will do gets done on time in practical form. If
I had heard this complaint merely once from a friend
who fancied that he was a hard-boiled engineer, then I
would dismiss it; unfortunately I have heard it from a
number of capable intelligent, understanding people.

As I earlier said, since we have such a need for financial
support for the current and future expansion of our
facilities, we had better consider how we can avoid such
remarks being made about our graduates in the coming
years. Are we going to continue to turn out a product
that is not wanted in many places? Or are we going to
turn out responsible, effective people who meet the

real needs of our society? I hope that the latter will

be increasingly true; hence mg emphasis on the practical
aspects of computer science.l

17. 1Ibid., 7.

18. Ibid., 8.

33

Much of the blame for this situation is attributed to the fact
that many of the faculty are "pure" mathematicians in their
background, and hence teach their courses as "pure" mathematics.
Additionally, this means that quite often courses are taught

in the wrong way. This is especially well illustrated in the
teaching of programming:

To parody our current methods of teaching programming,
we give beginners a grammar and a dictionary and tell
them they are now great writers. We seldom, if ever,
give them any serious training in style. Indeed I have
watched for years for the appearance of a Manual of Style
and/or Anthology of Good Programming and have as yet
found none. Like writing, programming is a difficult
and complex art. In both writing and programming,
compactness is desirable, but in both you can easily
be too compact. When you consider how we teach good
writing - the exercises, the compositions, and the talks
that the student gives and is graded on by the teacher
during his training in English - it seems we have been
very remiss in this matter of teaching style in programming.
Unfortunately only few programmers who admit that there
is something in what I have called "style" are willing
to formulate their feelings and to give specific examples.
As a result, few programmers_write in flowing poetry;
most write in halting prose.

Hamming turns his attention to some of the problems of
the course descriptions of "Curriculum '68" observing that
in many ways the committee concerned itself too much with
details of the courses, and not enough with underlying ideas.

He concludes by addressing an issue not covered in the
curriculum report; that of professional ethics:

Along these lines, let me briefly comment on the
matter of professional standards. We have recently had

a standard published and it seems to me to be a good one,
but again I feel that I am justified in asking how this

19 L] Ibid .y 9—10 [

34

is being incorporated into the training of our students,
how they are to learn to behave that way. Certainly

it is not sufficient to read it to the class each morning;
both ethical and professional behavior are not effectively
taught that way. There is plenty of evidence that

other professions do manage to commnicate to their
students professional standards which, while not always
followed by every member are certainly a lot better
instilled than those we are presently providing for

our students. Again, we need to examine how they do

this kind of training and try to adopt their methods

to our needs.

He concludes that these kinds of issues can be best handled

by the example of the faculty, but that it is important that

it be taught.

Summarz

Initial reaction to "Curriculum '68" was favorable.
Representatives of academic institutions looked on the
document with more regard than did those from industry.
Specific criticisms were for the most part not directed
to the courses themselves nor toward the suggested programs,
but rather to more philosophical matters. Among these concerns
were such things as whether the report represented too much
of a manual for program construction, the interdisciplinary
nature of programs and whether or not these were adequately
reflected, whether or not undergraduate programs were advisable,
and whether or not there was too much emphasis on mathematics.
Representatives of industry expressed primary concern

on whether or not enough practical programmning experience

20. 1ibid., I1.

|

was in the program. Related to this it was noted that methods

of introducing such experience was not adequately covered.
Additionally professionalism questions in computing were

not addressed.

36

Chapter 3 - Relation to Previous and Simultaneous Work

"Curriculum '68"™ was an outgrowth of "An Undergraduate

' Program in Computer Science - Preliminary Recommendations,

A Report from the ACM Curriculum Committee on Computer

2 Science" [57]. This document can be traced back to a

Panel at the 1963 Annual Conference of the ACM, reported

in the April 1964 Communications of the ACM, dealing with

Computer Science Curriculum. In approximately the same

time period the COSINE Committee of the Commission on Engineering

Education prepared course guidelines for Computer Science

in Electrical Engineering [461, and in May 1964 the Committee

on the Undergraduate Program in Mathematics prepared "Recommenda-
tions on the Undergraduate Mathematics Program for Work in
Computing™ [39]. In this chapter these recommendations

will be reviewed, looking for relationships between them

b and "Curriculum '68".

First the 1965 recommendations of the ACM Curriculum

Committee will be considered. Conte in comparing the 65
and 68 report notes the following:

...as compared with the 1965 report, the 1968
report accomplished the following:

1) Revised some of the 1965 recommendations,
sharpened some of the course outlines and added some
new courses

2) Attempted to produce some order out of the
diverse aspects of computer science by introducing a
classification scheme

A

37

3) Made some recommendations on graduate programs
in computer science especially at the MS level.l

The 1965 recommendations were drawn up by a committee

consisting of:

S. D. Conte

John W. Hamblen
Thomas A, Keenan
William B. Kehl
Silvio O. Navarro
Werner C. Rheinboldt
Earl J. Schweppe
David M. Young, Jr.
William F. Atchison

In the period following the publication of the 1965 report,
the National Science Foundation funded the project, allowing
for more frequent meetings, and Thomas E. Hull, Edward J.
McCluskey, and William Viavant joined the committee.

The Curriculum Committee viewed "Curriculum '68" as
a major refinement and extention of the 1965 work:

Of the sixteen courses proposed in the earlier
recommendations, eleven have survived in spirit if not
in detail. Two of the other five have been split into
two courses each, and the remaining three have been
omitted since they belong more properly to other disciplines
closely related to computer science. In addition seven
new courses have been proposed of which course B3
on "discrete structures" and course I3 on "computer
organization" are particularly notable.2

The breakdown of these courses is shown in Chart 3-1.
The 1965 report was the product of approximately three

years of work, and at the time of its publication it was

1. Sam Conte, "History and Activities of the ACM Curriculum
Committee," in William Viavant (ed.), Proceedings of the Park
City Conference on Undergraduate Computer Education (The
University of Utah, Salt Lake City, 1969), p. 43.

2. Curriculum Committee on Computer Science, "Curriculum '68,
Recommendations for Academic Programs in Computer Science®,

Communications of the ACM 11, 3 (March 1968), 153.

e

38

Chart 3-1

I.

11.
15.
16.

IT.

14.

IIT,

10,
12,
13.

B3.
I3,
A2,
A3.
AS.
Ab.
A8.

Comparison of "Curriculum '68" and "Curriculum '65"

Courses Appearing in both Curricula

"Curriculum '65" Curriculum '68"
Introduction to Bl. Introduction to Computer
Algorithmic Processes Science

Computer Organization B2. Computers and Programming
and Programming

Numerical Calculus B4. Numerical Calculus
Information Structures Il. Data Structures

Logic Design and I6. Switching Theory
Switching Theory

Numerical Analysis I I8. Numerical Analysis I
Numerical Rnalysis II I9. Numerical Analysis II
Computer and I4. Systems Programming
Programming Systems

Systems Simulation A4, System Simulation
Formal Languages Al. Formal Languages
Heuristic A9. Artificial Intelligence and
Programming Heuristic Programming

Courses Split

Algorithmic Languages I2, Programming Languages

and Compilers I5. Compiler Construction
Introduction to I7. Sequential Machines
Automata Theory A7. Theory of Computability

Courses not Appearing in "Curriculum '68"

Combinatorics and Graph Theory
Mathematical Optimization Techniques
Constructive Logic

Courses new in "Curriculum '68"

Introduction to Discrete Structures
Computer Organization

Advanced Computer Organization

Analog and Hybrid Computing

Information Organization and Retrieval
Computer Graphics

Large-Scale Information Processing Systems

39

anFicipated that the report would primarily be a basis from
which more detailed and comprehensive recommendations could
be developed. More effort was made throughout the 1965
work to justify the existence of computer science as a field
of study:

Although much change has been accomplished within
existing programs, such as mathematics and electrical
engineering, there is a sizable area of work which does
not naturally fit into any existing fieid. Thus, it
is now generally recognized that this area, most often
called Computer Science, has become a distinct field
of study. This development is reported by the Committee
on Uses of Computers of the National Academy of Science,
by several individual authors and in a report of the
Committee on the Undergraduate Program in Mathematics
(CUPM)+..o3

The hope of the committee in this report was that the report
would be a coordinating force for the many efforts already
going on in university education in computer science.

It was recognized that there was a definite demand for
computer work in various academic programs. This, however,
was not the primary purpose of this report:

The Committee has chosen to direct its attention
first to students whose primary interest is in computer
science. The Committee solicits comment and criticism
of the present report with the view of both strengthening
the current recommendations and illuminating the relation
between computer science and other fields of study.

The relationship of this work to other groups with

an interest in curriculum in computing, and especially CUPM,

3, Curriculum Committee on Computer Science, "An Undergraduate
Program in Computer Science, Preliminary Recommendations",
Communications of the ACM 8, 9 (September 1965), 543.

4. TIbid., 544.

o

40

was recognized:

The report of CUFM entitled "Recommendations
on the Undergraduate Mathematics Program for Work in
Computing™ is very well done. Members of C3S, some
of whom had consulted with CUPM, were greatly pleased
with the perception shown in this document and with
the fact that the program suggested by CUPM to some
degree paralleled their own thinking. That report,
however, was for the mathematics major and we feel
that additional work is needed for the computer science
major, especially in view of the fact that so many
schools are moving toward such a major.>

The curriculum was intended to meet the usual requirements

of undergraduate programs; entrance to graduate programs

- dn computér science, direct entry into the profession,

or entrance to graduate study in other fields. Thus the

program consisted of a small number of required courses:

1) Introduction to Algorithmic Processes
2) Computer Organization and Programming
3) DNumerical Calculus

4) Information Structures

5) Algorithmic Languages and Compilers

A series of "highly recommended electives™:

6) Logic Design and Switching Theory
7) Numerical Analysis I

8) Numerical Analysis IT

9) Computer and Programming Systems

and finally a list of "other electives'":

10) Combinatorics and Graph Theory

11) Systems Simulation

12) Mathematical Optimization Techniques
13) Constructive Logic

14) Introduction to Automata Theory

15) Formal Languages

16) Heuristic Programming

Mathematics and other related courses were also mentioned

5.

Ibid.

within this context of "required”, "highly recommended electives”,

41

and "other electives'.

An extensive justification of Computer Science as a

discipline as well as an explanation of its purpose is given:

Computer science is not simply concerned with
the design of computing devices - nor is it just the
art of numerical calculations, as important as these
topics are. Computer science encompasses many specialized
areas, all developing with extreme rapidity. It is natural
that one should associate some small part, to which
he has been exposed, with the subject as.a whole.
Even among those specializing in computer science,
few (if any) are able to keep pace with the flood of
innovation throughout the field.®

So much then for what computer science isn't; the question

then is what computer science is?

Computer science is concerned with information
in much the same sense that physics is concerned with
energy; it is devoted to the representation, storage,
manipulation and presentation of information in an
environment permitting automatic information systems.
As physics uses energy transforming devices, computer
science uses information transforming devices. Some
forms of information have been more thoroughly studied
and are better understood than others; nevertheless,
all forms of information - numeric, alphabetic, pictorial,
verbal, tactile, olefactory, results of experimental
measurements, etc. - are of interest in computer science.

Mathematics too is concerned with information and
its structure and this tends to confuse those not well
versed in both mathematics and computer science. The
mathematician is interested in discovering the syntactic
relation between elements based on a set of axioms
which may have no physical reality. The computer
scientist is interested in discovering the pragmatic
means by which information can be transformed to model
and analyze the information transformations in the
real world. The pragmatic aspect of this interest leads
to inquiry into effective ways to represent information,

6.

Ibid.

42
effective algorithms to transform information, effective
languages with which to express algorithms, effective
means to monitor the process and to display the transformed

information, and effective ways to accomplish these
at reasonable cost.’

The fact that academic programs had developed in a number
of institutions further points to the fact that computer
science is a discipline in its own right.

In the description of courses, there were hard decisions
to be made as to whether a course was assigned to computer
science or was assigned as a supporting course from another
discipline. The decision was made on the basis of the
relevancy of the material in question to the entire computer
science program. In the case of this report, a breakdown
as to the amount of time for each topic is not given. It
was also noted that although references are given for the
courses outlined, texts were not available for some of the
courses.

The courses described in this report, as with "Curriculum
68", were in terms of three semester hour courses:

In applying these recommendations to any given
college, consideration should clearly be given to the
possibility that certain courses may already be available
by modification of existing courses. Double listing
of courses is a technique that has sometimes been used
with apparent success.

We cannot be specific with regard to faculty
organization for this curriculum simply because of the

diversity of the American College structure. In some
schools an independent department of computer science

7. Ibid.

43

may be appropriate; in others such a department of
computer science may not. We concur with CUPM that
those responsible for computer science curricula should
be closely linked to the computer scientists engaged

in providing computational facilities. Although we
further agree that most of the computer science courses
described in this report will not be taught within
existing mathematics departments, there is considerable
benefit to be gained from mutual cooperation. In any
case either new departments will need to be established,
or existing mathematics (or other) departments will
need to recognize the participation of computer scientists
in the faculty development plan.8

The committee noted that several courses would well
serve students in other academic areas; among these are course 1
(Introduction to Algorithmic Processes) for science and engineer-
ing students; there is enough flexibility to meet most of
the requirements for the CUPM major in mathematics with
emphasis in computing; engineering students can use course 6
(logic design and switching theory) and course 10 (combinatorics
and graph theory); and the courses in numerical calculus‘and
numerical analysis (courses 3, 7, and 8) are of value to
a number df science related fields. The question of the
needs of the computer science student from other departments
is mentioned:

We have not investigated the question of whether

some modification of standard courses in mathematics,

physics, etc., would be desirable from the viewpoint

of a computer science major. Some intuitively feel

that this may be the case but admit that the question

needs careful consideration.

The committee concludes the formal portion of the report

8. 1bid., 545.

9, Ibid.

44

with their anticipation of future work, and their feeling
of the limitations of the present work:

The work of C3S is in its early stages. Readers
of this report are encouraged to communicate their ideas,
experiences and criticisms to the Committee. Not only
will the present recommendations need periodic review
but many suggestions concerning further computer-oriented
curricula are sought. Study of the computer science
needs of students in the non-physical sciences is appropriate.
It has been suggested that the educational needs of those
who will plan and design the computing and communication
equipment of the future should be given special considera-
tion. More specific thought will be given to the education
of those wishing to prepare themselves for work in
information retrieval, management science, the life
sciences, and the behavioral sciences. Finally, the
present recommendations do not deal with graduate computer
science. A committee to study graduate curriculum is
in the process of formation.lO

Detailed descriptions of the courses in the curriculum
follow. The way in which the courses fit together into the
curriculum is shown in Chart 3-2,

The 1965 Curriculum Report was preceded by a series

of papers appearing in the April 1964 issue of the Communications

of the ACM dealing with course programs in computer science.
These papers had first been presented at the 1963 ACM Annual
Conference in Denver by a panel consisting of A, J. Perlis [1461],
Bruce W. Arden [61], George F. Forsythe [781, Robert R.

Korfhage [1191, Saul Gorn [861, and David E. Muller L[1411].

In the printed version, critiques were added to each of the
papers, and a paper by Thomas A. Keenan [117] attempting a
definition of computer science and a paper by William F.

Atchison and John W. Hamblen [18] indicating the current

10. Ibid.

45

Chart 3-2
Structure of the Curriculumll

I. Required Courses
A, Basic Computer Science
1. Introduction to Algorithmic Processes
2. Computer Organization and Programming
3. Information Structures
B. Theory Courses .
5. Algorithmic Languages and Compilers
C. Numerical Algorithms
4., Numerical Calculus (or Course 7)
D. Supporting Courses
Beginning Analysis (12 Credits)
Linear Algebra (3 Credits)

IT. Highly Recommended Electives
A, Basic Computer Science
6. Logic Design and Switching Theory
B. Numerical Algorithms
7. Numerical Analysis I
8. Numerical Analysis II
C. Supporting Courses
Algebraic Structures
Statistical Methods
Differential Equations
Advanced Calculus
Physics (6 Credits)

III. Other Electives
A. Basic Computer Science
10. Combinatorics and Graph Theory
B. Theory Courses
13. Constructive Logic
14. Introduction to Rutomata Theory
15. Formal Languages
C. Computer Models and Applications
11. Systems Simulation
12. Mathematical Optimization
16. Heuristic Programming
D. Supporting Courses
Analog Computers
Electronics
Probability and Statistics
Linguistics
Philosophy
Philosophy of Science

J

11. 1bid., 546.

A

T~ e+

n&i“imu_

46
state of computer science were added.
In Keenan's [117] definition of computer science, he

identifies four basic topics of interest to the computer

scientist:

1) Organization and interaction of equipment
constituting an information processing system
2) Development of software systems with which to

control and communicate with equipment

3) Derivation and study of procedures and basic
theories for the specification of processes

4) Application of systems, software, procedures
and theories of computer science to other disciplines

He then goes on to give examples of the kind of work that
goes on under each of these topics.
Within this definition of the field, Keenan turns to

the question of education in computer science. Here he

identifies five areas:

1) General Education - to insure that the public
is properly aware of computers and what they can do
Training of Programmers
3) Orientation of Scientists
4) Education of Computer Specialists
5) Development of Computer Scientistsl3

Keenan then notes that each of these areas carries its
own problems of emphasis and standards, and he relates the
material in the set of papers to these levels of education:

The courses described in this issue neither encompass
the full domain of material available in computer
science, nor signify the end product of the present
curriculum evolution. The descriptions give but a
snapshot of current thought on desirable material and
methods of presentation in selected areas. Some of

12. Thomas A. Keenan, "Computers and Education", Communications
of the ACM 7, 4 (April 1964), 206.

13, Ibid., 207-208.

47
the courses (Perlis, Arden) are appropriate as introductions
for computer specialists or for the orientation of
students of other sciences; others (Muller, Korfhage,
and Forsythe) described courses for computer specialists -
i.e. undergraduate computer scientists - which may
also merit consideration as electives for other disciplines;
Gorn describes material largely of his own development
which is placed at the graduate level in computer
science.l4
Perlis [146] describes a one semester first course in
programming. The course which covered: (1) structure of
algorithms; (2) structure of languages; (3) structure of
machines; (4) structure of programs; and (5) structure of
data, did not concentrate on the details of a language or
a machine, leaving the mastery of this material to the
problems and exercises. Perlis then goes on to outline
a curriculum for an option in computation in an undergraduate
mathematics major. Effectively this option adds to a
traditional mathematics major course in Boolean Algebra and
Switching Theory, Numerical Calculus, Computer Systems,
Constructive Logic, and Advanced Theory of Computation.

T. M. Gallie in a brief critique of the paper finds
no fault with either the course or the program described,
noting that both require enthusiastic and knowledgeable
professionals to be offered successfully. He indicates
that few such individuals currently exist and expresses the

hope that the universities will set out to prepare such

people.,

14. Ibad., 209.

A

48
Arden [6] presents a course designed as an introduction
to computing for engineering and science students. Recognizing
that such students will only have an opportunity to take
one course in computing, this course attempts to select
significant topics from computer systems, numerical analysis,
and programming. As with Perlis's course, a great deal of
emphasis is placed on exercises which supply many of the
details not covered in the formal classroom instruction.
Forsythe [78] presents a curriculum in Numerical Analysis
consisting of a one quarter freshman-sophomore course, a
three quarter senior course and he includes brief mention
of a three quarter graduate course. He too stresses the
importance of programming exercises:

A1l of these courses should involve good exercises
for the student, both in analysis and in use of an
automatic computer. Several exercises should require
the marriage of good analysis to imaginative programming.
This means that their formulation must depend critically
on the experience of the students in analysis and pro-
gramming, and on the power of the computer to be used
and the sophistication of the available languages.
Devising good problems is very difficult, and yet it
is the central part of preparing these courses. In
my experience, the computer problems have usually been
too many and too easy. They tended to test the student's
facility at syntactical debugging more than his power
in devising effective algorithms.l5

David Young in a critique of the paper suggests a bit more
mathematical background for the work in numerical analysis,

and an integration of the work in numerical methods and

programming .

15. George E. Forsythe, "An Undergraduate Curriculum in
Numerical Analysis", Communications of the ACM 7, 4 (April
1964), 214.

B

1

49

Xorfhage [119] recognizes the special place of logic in
the education of a computer scientist and proposes a sequence
of four courses in the area; Introduction to Logic and
Algorithms, Logical Design, Mathematical Logic, and Computability
and Algorithms.

Muller [141]1 also addresses the problems of introducing
logic into the educational program of the computer scientist,
but he does it in terms of a sequence in logical design and
switching theory. In a critique of this paper Garner, while
recognizing the importance of the material, raises a question
as to whether the material would be better covered in an
interdisciplinary approach.

Gorn [86], with little discussion, outlines a graduate
course in mechanical languages.

Atchison and Hamblen [18], in the concluding article
of the sequence, consider existing programs in computer
science. A survey they conducted in 1963 identified 28
such programs with another 18 anticipated. The programs
were identified by a variety of names including:

Computer Science

Systems Engineering

Systems Analysis

Information Processing

Data Processing

Information Science
Information Systems Science
Computer Oriented Mathematics

Applied Sciences
Applied Mathematicsl6

16. William F. Atchison and John W. Hamblen, "Status of Computer
Science Curriculum in Colleges and Universities". Communications
of the ACM 7, 4 (April 1964), 227.

A

.50

Computer Science was the most commonly selected and the one
felt most appealing to the area of study. It was noted

that the programs arose from or were housed in mathematics,
engineering (usually electrical but occasionally industrial)
or business administration, with the majority associated

with mathematics:

At this point in time, most existing computer
programs have come from the first of these, namely
mathematics. Most of these programs still have a very
strong orientation towards mathematics. Many of them
are, in fact, little different from a degree program
in numerical analysis where the computer has been used
in problem solution. Others have developed to a point
where they have a strong emphasis in advanced programming
and the development of computer languages. Some are
laying down a broader base by including in their pre-
paration of computer oriented personnel such things
as logic, Boolean algebra, theory of automata and arti-
ficial intelligence. Others have a very strong emphasis
on the statistical side.

There are people who contend that after all computer
science is nothing but a portion of applied mathematics.
There is certainly no question but what the rigorous
thought-processes that are required in mathematics are
likewise required in the computer field. This is not
to say, however, that an excellent mathematician will
be a good computer man or conversely. It should be
remarked that there are mathematics departments which
already have or are planning to incorporate some computer
training in their calculus sequence. The view is)
frequently expressed that some computer science will
crystallize out of mathematics, as has statistics.l?

In September 1967 the COSINE Committee of the Commission

on Engineering Education published Computer Sciences in

Electrical Engineering [46], recommending an undergraduate

course program. The report in condensed form appeared in

17. 1Ibid., 227.

51

the March 1968 issue of IEEE Spectrum. Though originally

designed as an enhancement of an electrical engineering
curriculum, this report has had impact on computer science
curricula in general, as has subsequent work of the COSINE
Committee which will be reviewed in subsequent chapters.
Throughout the work of the COSINE Committee liaison was
maintained with C3S through E. J. McCluskey and William
Viavant.

The COSINE Committee did not regard its mission as
the same as C3S, and did not equate electrical engineering

and computer science:

Clearly it would be unreasonable to equate computer
sciences with electrical engineering, or to regard
it as a subset of the latter. Nevertheless, the close
relation between the two is presenting the electrical
engineering departments with a special responsibility
for the training of the large number of computer engineers
and scientists who would be needed by industry, government,
business, and educational institutions in the years
ahead .18

The report then goes on to reflect on how the existence of
computer science and computing systems is impacting instruction
in electrical engineering:

The emergence of computer sciences as a highly
important field of study, coupled with the growing
shift in emphasis in information processing technology
from the analog and continuous to the digital and the
discrete, is creating an urgent need for a major
reorganization of electrical engineering curricula.
Such a reorganization must, in the first place, accommodate
the needs of students who wish to major in computer

18. COSINE Committee, Computer Science in Electrical Engineering
(Commission on Engineering Education, Washington, D. C.,
September 1967), p. 5.

52

sciences within electrical engineering. Second, it

must bring into balance the treatment of continuous

and digital systems, and provide all electrical engineering
students with a background in digital systems comparable

to that which they currently acquire in continuous

systems. Third, it must result in a much wider and

more effective use of the digital computer as a tool

for system analysis and design in all engineering courses.l9

All these areas are addressed in the report, however, the
Computer Science Program in Electrical Engineering is of
primary interest to this study.

In specifying a computer science program in electrical
engineering, the committee first specifies the aims of the
program:

a) It must provide the student with a thorough
understanding of computer systems and their use that
is based on fundamental principles of long term value
rather than the salient facts of contemporary practice.

b) It must give the student a background in the
relevant discrete mathematics (set theory, mathematical
logic, and algebra) including familiarity with methods
of deduction as applied to abstract models relevant
to the field of computation.

c¢) It must give the student access to a variety
of subjects covering specialized and advanced aspects
of computer science.

d) It must provide the student with sufficient
technical and general knowledge so that he can readily
broaden his education through continuing study, and
remain adaptable to the changing demands of society
throughout his professional life.20

To meet these objectives a curriculum is suggested by
subject areas. The subject areas do not necessarily each

imply a three semester hour course:

19. 1bid., D. 6-

20. Ibid., p. 9.

53

Subject Areas for a Computer Science Program in Electrical
Engineering2l

Category A: Basic Subject Areas

Programming Principles

Computation Structures

Introduction to Discrete Mathematics
Machines, Languages and Algorithms

fo= e =i~ =
AW

Category B: Recommended Elective Subject Areas
Digital Devices and Circuits
Switching Theory and Logical Design
Programming Systems

Operating Systems

Numerical Methods

Optimization Techniques

Circuit and System Theory
Information Theory and Coding
Functional Analysis

Combinatorics and Applications
Probability and Statistics

Symbol Manipulation and Heuristic Programming

1
-

L

1 i 1

wwww?uwmww

i
el =i t
FRFowo~oOunPWN

ik
N

Areas A-1, A-2, and A-3 correspond to courses Bl,

Introduction to Computing, B2, Computers and Programming

" and B3, Introduction to Discrete Structures of "Curriculum '68",

though the descriptions in the COSINE report seem to indicate
a somewhat higher level. Area A-4 as described in the report
covers much of the same material as courses I7, Sequential
Machines, Al, Formal Languages and Syntactic Analysis, and
A7, Theory of Computability.

From the elective subject areas B-2 corresponds to course
I6 Switching Theory, B-3 to courses Il Data Structures and
I2 Programming Languages, B-5 to the courses B4 Numerical
Calculus, I8 Numerical Analysis I and I9 Numerical Analysis II,

area B-12 corresponds to A9 Artificial Intelligence and

21. 1bid., p. 10.

54

Heuristic Programming. The collection of other courses,

covering more engineering topics, cover I3 Computer Organization

and A2 Advanced Computer Organization.

It is of note then that much of the material recommended
in the COSINE report parallels that of "Curriculum '68".
The main differences appear in the advanced areas, and in
the lack of a course or area corresponding directly to
Compiler Construction. The core of the two programs are
virtually the same, however the work reported on by the
COSINE Committee does not place the area of Data Structures
in as fundamental a position as did C3S.

The other report to be considered in this group is

the Recommendations of the Undergraduate Mathematics Program

for Work in Computing [39], published in May, 1964 by the

Panel on Mathematics for the Physical Sciences and Engineering
of the Commission on the Undergraduate Program in Mathematics
(CuPM).

This program was designed to enhance a mathematics major,
and came about from the recognition that many mathematics
students are going into some area of computing. This
Committee's view of the relationship between mathematics
and computer science is specified:

Out of the solution of such problems as these

has emerged a field of study called Computer Science,

embracing such topics as numerical analysis, theory

of programming, theory of automata, switching theory,

etc. Computer Science is closely related to mathematics;
indeed, numerical analysis is a branch of that subject,

55

while many of the problems arising from computers are
intimately associated with questions in combinatorial
mathematics, abstract algebra, and symbolic logic.

But an even more fundamental relationship also exists.

The inherent structure of a computer forces the attendent
disciplines to strive for the type of generality, abstraction
and close attention to logical detail that is characteristic
of mathematical arguments. Research workers in Computer
Science must have a knowledge of the spirit and techniques
of mathematics. Although they do not need to be mathe-
maticians, they must think like mathematicians.

For these reasons a university or college organization
charged with the responsibility for research and training
in Computer Science should be closely linked to mathematics
within the institution. (It goes without saying that
it should also be coordinated with groups charged with
providing computation services to the academic community.)
It is to the combined group of mathematicians and computer
scientists that we direct our report.22
The report recommends a three hour introductory course
in computer science covering the description of a computer,
the description of a programming language, and problem solving.
This course would not be a part of the standard mathematics
curriculum, but instead would be the base for a technical
sequence in computer science. Though not described in as
much detail, the course proposed corresponds to course Bl,
Introduction to Computing, of "Curriculum '68".

With this course specified the report goes on to recommend
a program for a mathematics major with an option in computing:

CUPM Proposed Mathematics Program with Option in Computing23

A. The introductory course in Computer Science is a
Requirement (3 semester hours)

22, Committee on the Undergraduate Program in Mathematics
(CuPM), Recommendations of the Undergraduate Mathematics
Program for Work in Computing (CUPM, Berkeley, California,
May, 1964), pp. 1-2.

23, Ibid., 7.

56

B. Required mathematics courses
1. Beginning analysis (12 semester hours)
2. Linear Algebra (3 semester hours)
3. Probability and statistics (3 semester hours)
4, Algebraic structures (3 semester hours)
5. Advanced calculus (6 semester hours)
6. Numerical analysis (3 semester hours)

C. Electives (3 semester hours each). A minimum of
six semester hours. With the exception of course 8
(Logic), the Introduction to Computer Science is
a prerequisite for each of the following:

7. DNumerical analysis

8. Logic

9. Information processing
10. Machine organization
11. Theory of automata
12. Advanced programming
13. Combinatorics
14. Systems simulation

It can be seen that the program described here, selecting
the machine organization and advanced programming electives
would roughly cover the core of "Curriculum '68" with Data
Structures, course Il, and Systems Programming, course I4

being the notable exceptions.

Summarz

"Curriculum '68" may be seen as an expansion and refinement

of the 1965 report of C3S. The earlier report spent a great
deal more time on the definition of computer science, its
justification as a discipline, and its relationship to other
disciplines, especially mathematics. The 1965 report was
not the first nor last time these questions were addressed,
and further work in these areas are covered by Arsac [13],
Gorn [85, 87], Hammer [99, 1001, Yovits [189] and Zadeh [190].
The 1965 report of C3S can be seen as something of

an outgrowth of a panel presentation at the 1963 ACM meeting

57

and reported in 1964 in the Communications of the ACM.

Within these articles one finds a definition and specification
of computer science; course and program descriptions emphasizing
the first course, numerical analysis, logic and logic design;
and descriptions of existing programs in higher education in
the United States. Within these course and program descriptions
emphasis was placed on the role of programming projects
and exercises as an integral portion of the programs, and
the close ties of computer science education to mathematics
is noted.

Two other reports were prepared during the same time
frame as the work of C3S. The COSINE Committee presented
a program within electrical engineering that emphasizes
subject areas rather than specific courses. CUPM presents
a program for mathematicians desiring some exposure to computer
science. 1In both cases the programs recommended, while
differing somewhat in detail, contain virtually the same
material as found in the undergraduate program of "Curriculum
'68". The most noticable exception is that neither the work -
of COSINE nor CUPM put the emphasis on the data structure

area that is found in "Curriculum f68".

58

Chapter 4 - Relation to Existing Programs

To assess the impact of "Curriculum '68" and the areas
requiring attention, several studies of computer science
curricula will be considered. The first of these is the
"Inventory of Computers in United States Higher Education
1969-70" completed in 1972 by the Computer Science Project
of the Southern Regional Education Board, under the direction
of John Hamblen. The material cited here is reduced from
the summarized raw data of the study. The survey is reported
in part in [97] and [98], while [96] reports an earlier
similar survey.

In this Study, information regarding the organization
and resources of university computer centers was gathered.

In addition, data were collected on degree programs in computer
science, and on computer science course offerings. 770
degree programs in computer science were listed as being
offered in 1971-2. These were listed under 13 different
names, with only one unidentifiable. 286 or 37.14% of

these programs were offered at schools granting the associate
degree as their highest degree. The greétest number of
programs were listed under the name of computer science
(43.34%) with data processing comprising 32.60%, though

these were primarily associate degree programs offered at
institutions offering at most the associate degree. Table
4-1 summarizes the number of degree granting departments

by name.

T

Computer Science Related Degrees Offered 1971-2 Table 4-1
Degree

Department Name Associate | Bachelor's Master's | Doctorate Total
Computer Engineering 4] 2 1 1 4
Computer Programming 43(37) 7 0 I 49(37)
Computer Science 42(29) 153 100 59 -354(293)
Computer Technology 22(11) 9 3 2 — 36(11)
Data Processing 219(205 26(1) 5 1 251(206)
Information and

Control Science 0 2 3 2 7
Information Processing 0 I 0 C I
Information Science -0 5 10 b 21
Inrormation Systems 7(3) 10 () 4 27(3)
Systems Analysis 1 3 3 1 8
Systems Engineering 0 8 12 T 27
Systems and

Information Science 0 0 1 1 2
Systems bcience 0 1 0 1 2
Unknown 9] 1 0 0 1

Total 332(285 208(1) 144 86 770(286)

note - parenthesized quantities refer to institutions offering at most the associate degree

6S

60

Within these programs, 9935 degrees were awarded in
the academic year 1970-71. 5151 or 51.85% of these degrees
were awarded by institutions offering at most the associate
degree. 56.51% of the degrees awarded were associate degrees,
25.35% bachelor's, 15.54% master's, 2.60% doctorates. Degrees
awarded in 1970-71 are given in Table 4-2.

In terms of enrollment in 1969-70, these programs accounted
for a total of 55,999 students; 33,447 or 539.73% of these
were enrolled at institutions offering at most the associate
degree. 87.84% of the students were undergraduates, while
12.16% were graduate students. These figures refer to students
enrolled in the respective majors. Enrollment figures for
1969-70, by departmental title are given in Table 4-3.

The SREB Study considers courses offered in computer
science areas, whether they were part of a degree program

or not. The following descriptors were used for the identifi-

cation of courses:l

Computer Appreciation

Problem Solving in the Humanities

Introductory Course in Some Compiler Language such .
as FORTRAN, PL/I, BASIC, ALGOL

Introductory Course in a Language such as COBOL

Problem Solving Course in Engineering or Scientific
Applications

Introductory Course in Programming

Advanced Course in Programming

First Course in Computer Design

Advanced Course in Computer Design (Computer
Architecture)

Programming Languages (Structure, etc.)

Operating Systems (Systems Programming, etc.)

Data Structures

Automata Theory

T. From the instructions for the survey forms.

Degrees awarded in Computer Science and Related Programs 1370-71 Table 4-2
% Degree

Department ssociate | Bachelor's | Master's | Doctorate Total
Computer Engineering 0 11 3 0 14
Computer Programming 819(697) 32 0 0 851(697)
Computer Science 435(354) 1537 - 1249 198 3419(354)
Computer Technology 295(125) 88 9 2 394 (125)
Data Processing 971(3870)] 5395(4.L) 19 2 4387(391l)
Information ana

Control Science 0 10 3 14 27
Information Processing 0 0 0 0 0
Information Science 0 78 66 16 160
Information Systems 94 (64) 133 43 6 276(64)
Systems Analysis 0 31 27 0 58
Systems Engineering 0 149 98 14 261
System and

Information Science 0 0 27 6 33
Systems Science 0 48 0 0 48
Unknown 0 7 0 0 7

Total 5614(5110)} 2519(41) 1544 258 9935(5151)

note - parenthesized quantities refer to institutions offering at most the associate degree

T9

Enrollment in Computer Science Related Degree Programs 1969-70 Table 4-3
Department Undergraduate Graduate
Computer Engineering 85 9
Computer Programming 4786(3868) 63(44)
Computer Science 10909(2428) 4725
Computer Technology 2791(1009) 53
Data Processing 27712(25551) 159(46)
Information and

Control Science 0 585
Information Processing 0 0
Information Science 546 240
Information Systems 1198(501) 241
Systems Analysis 120 132
Systems Engineering 893 402
Systems and

Information Science 0 199
Systems Science 75 0
Unknown 76 0

Total 49191(33357) 6808(90)

note - Parenthesized quantities

refer to institutions offering at most the associate degree

z29

63

Simulation Applications (non-econometric)

Simulation Languages and/or Techniques

Artificial Intelligence (Heuristic Programming)

Hybrid Computers

Discrete Structures

Computer Organization

Switching Theory

Sequential Machines

Compiler Construction

Formal Languages and Syntactic Analysis

Introductory Computer Organization

Advanced Computer Organization

Information Storage and Retrieval

Computer Graphics

Computability

Introductory Numerical Analysis (or methods)

Advanced Numerical Analysis

Introductory Operations Research

Advanced Operations Research

Data Communications

Process Control

Data Preparation (Keypunch, verifier, data entry, ...)

Unit Record (EAM)

Introductory Course in Data Processing

Advanced Course in Data Processing

Problem Solving Course in Business Applications

Advanced Business Applications (Marketing, Finance,
Production, etc.)

Introductory Systems Analysis (Business)

Large Scale Information Processing Systems

File Organization

Data Base Management

Information Systems Design (Introductory)

Information Systems Design (Advanced)

Management of Computer Centers and of Information
Processing Departments

Management Information Systems

Computers and Accounting (Including Auditing)

Econometric Simulation Applications

Other

Description not coded.

A variety of information was gathered for each of the
courses listed under these descriptions. This data includes
the following: number of times offered in 1969-70, 1970-71,
and 1971-72; the requirement status of required for majors
in computer science, required for minors in computer science,

service course for science majors, service course for

.64

non-science majors; the mode of operation of the course;
average section size for the course; enrollment for 1969-70;
and the cost of computing services for the course.

9971 courses were offered or on the books in 1971-2.
These courses enrolled a total of 554,499 students in the
1969-70 school year. Of these courses 2838 or 28.46% were
offered at institutions offering at most the associate degree,
and courses at these institutions enrolled 177,230 or
31.96% of the students in 1969-70.

Table 4-4 presents the data for the courses of "Curriculum
'68". Table 4-5 presents the data for courses which may
best be classified as service courses., Table 4-6 presents
the data for courses which may be classified as data processing
courses. Table 4-7 presents the data for courses falling
into none of the above classifications.

Courses comparable to those of "Curriculum 68" comprised
52.11% of the courses listed, and enrolled 52.81% of the
students enrolled in computer related courses in 1969-70.
18.65% of the courses could be grouped under the category
of service cburses, and these enrolled 17.34% of the students.
82.00% of the courses were listed as either 3-4 quarter
hours or 3-4 semester hours credit. Only 9.38% of the
responses were classified as "other" or "description not
coded™”,

In Fall 1971, Engel [71] conducted a survey on the impact
of "Curriculum '68" for C3S. Concentrating on established

programs, the questionaire was circulated to the approximately

Fmam,\,,,.<,__ e

Course Data for Courses of "Curriculum ‘68" Table 4-4
Course Offered as | Required |Required | Service Service Enrolliment
"Curriculum '68" on books Major CS |Minor CS | Science | Non Science 69-70 j
71-72 |
Bl. Introduction 1778 781 80 487 414 188945 !
to Computingl (633) (412) (12) (91) (63) (41289) :
B2. Computers and 728 443 31 146 77 27897
Programming? (311) (271) (1) (18) (9) (10830)
B3. Introduction 71 45 6 13 3 1441
to Discrete (1) (L) (80)
Structures
B4. Numerical 405 173 27 162 25 12882
Methods3 (38) (33) (3) (1645)
I1. Data 146 91 14 20 14 4190
Structures (8) (8) (480)
12. Programming 239 139 24 49 19 8667
Languages (56) (54) (2) (2128)
I3, Computer 221 135 21 31 12 9615
Organization4 (34) (29) (4) (1) (2382)
4. Systems 326 222 19 44 19 11773
Programming 5 (92) (87) (1) (1) (3) (4040)
I5. Compiler 135 83 5 26 5 2880
Construction (7) (7) (169)
I6. Switching 121 66 2 36 3 5219
Theory
I7. Sequential 36 14 2 12 0 862
Machines
I8.-I9. Numerical 267 115 10 96 12 4187
Bnalysis I & II6 (11) (11) (230)
Al. Formal 107 66 0 15 11 1681
Languages and (8) (7 (1) (125) _
Syntactic Analysis o
(V2]

mng
i

Table 4-4 (continued)

Course Offered as | Required [Required | Service Service Enrollment

"Curriculum '68" on books Major CS | Minor CS | Science | Non Science 69-70
71-72

A2, Advanced 69 40 3 7 6 1746
Computer (5) (5) (70)
Organization
A3. Analog and 46 16 1 22 0 956
Hybrid Computing/ [@9) (1) (16)
A4, System 209 89 6 56 31 4588
Simulation8 (6) (6) (165)
A5, Information 76 32 2 16 21 1549
Organization and (1) (1) (27)
Retrieval9
A6. Computer 46 13 3 17 3 851
Graphics (4) (2) (1) (71)
A7. Theory of 58 33 1 14 2 858
Computability
A8. Large Scale 35 15 0 12 1 553
Information (s) 4) (196)
Processing Systems
A9. Artificial 77 37 2 16 3 1479
Intelligence and (L) (1) (8)
Heuristic
Programming
notes - 1. Course Bl did not have an equivalent in the survey descriptors. This is

a combination of "Introductory Course in some compiler language such as FCRTRAN,

PL/I, BASIC, ALGOL" and "Introductory Course in Programming".

2., Course B2 did not have an equivalent in the survey descriptors.

for "Advanced Course in Programming™.
3. Listed under "Introductory Numerical Analysis (or Methods)".
4. Combined "Computer Organization” and "Introductory Computer Organization™.

This is

99

Table 4-4 (continued)

5. Listed under "Operating Systems (Systems Programming etc.)™.

6. Not listed as two courses only "Advanced Numerical Analysis'.

7. Listed under "Hybrid Computers”.

8. Course A4 did not have an equivalent in the survey descriptors. This is
a combination of "Simulation Applications (non-econometric)¥, and "Simulation
Languages and Techniques™.

9., Listed under "Information Storage and Retrieval”.

i
|
1
!
1

Parenthesized quantities refer to material on institutions offering at most
the associate degree.

L9

Course Data for Service Courses Table 4-5
Course Offered as | Required | Required | Service Service Enrollment

Descriptor on books Major CS | Minor CS | Science | Non Science 69-70

71-72

Computer 208 50 10 26 114 18112

Appreciation (56) (21) (3) (1) (29) (6350)

Problem Solving 88 8 1 21 55 2318

in Humanities (1L (1) (41)

Introductory Course 456 310 7 33 100 27410

in a language such (273) (247) (6) (18) (16137)

as COBOL

Problem Solving 456 91 7 297 41 18664

Course in (71) (32) (36) (3) (2364)

Engineering or

Scientific

Applications

Problem Solving 228 129 6 16 71 12212

Course in Business (115) (96) (1) (5) (11) (4102)

Applications

Advanced Business 95 48 2 10 25 3752

Applications . (30) (27) (2) (739)

(Marketing, Finance,

Production, etc.)

Introductory 257 196 b 8 44 9987

Systems Analysis (154) (145) (9) (5534)

(Business)

Computers and 46 15 4 2 23 2377

Accounting (12) (8) (4) (411)

(including auditing)

Econometric 26 7 0 7 11 1320

Simulation (3) (3) (75)

Applications

note - Parenthesized

quantities refer to institutions offering at most the associate degree

89

Course Data for Data Processing Courses Table 4-6
Course Offered as | Required | Required | Service Service Enrollment
Descriptor on books Major CS | Minor CS | Science | Non Science 69-70
71-72
Data Preparation 65 31 2 6 27 6358
(keypunch, (56) (27) (2) (6) (22) (3615) .
verifier, data |
entry, ...) ;
Unit Record (EAM) 196 144 2 4 44 14889
(151) (126) (2) (3) (19) (12165)
Introductory 457 246 12 - 25 191 77538
Course in (246) (190) (2) (6) (51) (47108)
Data Processing
Advanced Course in 109 61 3 18 24 5399
Data Processing (42) (31) (3) (5) (2148)

note - Parenthesized quantities refer to institutions offering at most the associate degree

69 -

Course Data for Other Courses Table 4-7
Course Offered as | Required | Required | Service Service Enrollment
Descriptor on books Major CS | Minor CS |Science { Non Science 69-70
71-72
First Course in 135 73 10 43 6 5697
Computer Design ‘(15) (13) (1) (1) (1L (823)
Advanced Course in 88 43 6 22 3 2515
Computer Design (1) (1) (50)
(Computer
Architecture)
Automata Theory 131 75 5 31 2 2123
(1) (1) (250)
Advanced Computer 69 40 3 7 6 1746
Organization (5) (5) (70)
Introductory 140 59 6 50 22 6687
Operations Research (13) (12) (L) (407)
Advanced 77 32 4 29 6 1307
Operations Research (3) 2) (1) (94)
Data Communications 44 21 3 14 5 1406
(11) (7) (2) (2) (344)
Process Control 39 18 1 16 2 959
(6) (6) (212)
File Organization 24 17 2 3 1 615
(8) (8) (192)
Data Base 18 10 0 1 5 682
Management (5) (5) (92)
Information 140 101 3 12 22 4408
Systems Design (65) (64) (D (2302)
(Introductory)
Information 92 69 1 9 12 1957
Systems Design (40) (38) (L) (893)
(Advanced)

oL -

Table 4-7 (continued)

Course Offered as | Required| Required] Service Service Enrollment

Descriptor on books Major CS|} Minor CSj Science | Non Science 69-70
71-72

Management 103 49 4 11 37 4195
Information (23) (22) (L (589)
Systems
Management of 53 40 1 3 7 1614
Computer Centers (29) (27) (1) (D (688)
or Information
Processing
Departments

note - Parenthesized

quantities refer to institutions offering at most the associate degree

~
=

.72

50 institutions offering a Ph. D, in Computerlscience which
appeared on the so called "Forsythe List™. Of these twenty-six
responded. The material requested concentrated primarily on
the relationship of existing courses to "Curriculum '68",
and by no means attempted to determine the broad view of
computing in American Colleges and Universities that was
attempted in the Hamblen study.
The first area in which response was requested was in
a course by course comparison of the curriculum of the
schools to "Curriculum '68". This data is shown in Table 4-8,
Twenty-one responses were given to the question of
whether or not the prerequisite structure shown in "Curriculum
'68" is adequate. Nineteen responded that it was, while only
two indicated it was not, with one of these saying the program
was "too heavily oriented to numerical prerequisites”.
Comments were requested for suggestions for change
in "Curriculum '68". Two were negative:
"Not suitable for our courses which rather divide
the subject differently." .
"The ACM is totally unimaginative, I do not like it. "2
The other comments received supplied more specific
suggestions for change:

"Al (watered down) should be a prerequisite for IS."

"One year of calculus before starting the computer
science major.,"

"A few of the definite prerequisites could be
replaced by desirable prerequisites.”

2. Gerald L, Engel, "Input From ACM Curriculum Committee
on Computer Science", SIGCSE Bulletin 3, 4 (December 1971), 31.

Relation of Courses in Existing Programs to Courses of "Curriculum '68"3

Table 4-8
Course Offered as Similar Not Comments
Specified Course Offered
Offered
BI. Introduction to 9 16 1
Computing
B2. Computers and 8 15 3
Programming
B3. Introduction to 6 13 7 Two had course available
Discrete Structures in mathematics, one had
course available in EE
B4. Numerical 7 13 6 Three had course
Calculus available in mathematics
I1l. Information 9 15 2
Structures
I2. Programming 5 17 4 One planned
Languages
I3, Computer 5 17 4 One planned, one had
Organization course available in EE
I4., Systems 4 20 2
Programming
I5. Computer 8 18 0
Construction
I6., Switching Theory 6 8 12 Eight had course
available in EE
I7. Sequential 4 12 10 Three had course
Machines available in EE, one
planned
I8. Numerical 8 15 3 Three had course

Analysis T

available in mathematics

3. 1bid., 30-31.

gL

T

Table 4-8 (continued)

Course Offered as Similar Not Comments
Specified Course Offered
Offered

I9. Numerical 7 15 4 Three had course

Analysis II available in mathematics

Al., Formal Languages 5 18 3

and Syntactic Analysis

A2, Advanced Computer 2 18 6 One had course offered

Organization in EE

A3. Analog and Hybrid 1 4 21 Seven had course offered

Computing in EE, four did not have
necessary equipment, one
did not have necessary
staff

A4, System 1 12 13 One had course offered

Simulation in EE, two had course
offered in operations
research, one had course
offered in IE, four did
not have necessary staff

A5, Information 4 13 9 Two did not have

Organization and necessary staff, one had

Retrieval course offered in
Library School

Ab. Computer Graphics 3 7 16 One had course offered
in EE, two did not have
necessary equipment, two
did not have necessary

: staff
A7. Theory of 1 24 1

Computability

YL

Table 4-8 (continued)

Course Offered as Similar Not Comments
Specified Course Offered
Offered
A8. Large-Scale 1 9 16 Two planned, two did not
Information have necessary staff
Processing Systems
A9. Artificial 5 16 5 One had course offered

Intelligence and
Heuristics

in EE

SL

.

.76
"T1 should precede I2, Il is not needed for Al."
"Do not need Bl as a prerequisite for B3."
"Delete B3. It is not clear why this should be
a specific prerequisite to any course. We haven't
needed I6 and I7."
"See no reason to have Il as a required prerequisite
of Al, even though it may be desirable."
"A5 should concentrate on file organization, it
would then require I4 as a prerequisite."4
Of the twenty-six institutions, fourteen offered under-
graduate degrees in computer science. All fourteen of the
institutions required course Bl for an undergraduate major,
and all but one required B2. The rest of the courses listed
in the "core" of "Curriculum '68" were required in at least
half the program with B3 required at eight institutions,
B4 required at nine institutions, Il required at eight institu-
tions, I2 required at ten institutions, I3 required at seven
institutions and I4 required at eight institutions. Of this
8
eight course core only one institution required all eight,
and only one required just one of the courses. Two required
four, two required five, five required six, and two required
seven. The other courses listed in "Curriculum '68" appeared
as requirement to a lesser degree: I5 appeared four times,
I6 four times, I7 once, I8 four times, I9 twice, Al twice,
A3 once, A4 once, A5 once, A8 once, and A9 once. Only A2 -
Advanced Computer Organization, A6 - Computer Graphics, and

A7 - Theory of Computability failed to appear as undergraduate

requirements.

"Curriculum '68" suggested courses in calculus, differential

Z. 1bid., 31.

77

equations, linear algebra, and probability. Twelve of the
institutions required calculus for an undergraduate major,
eight required differential equations, nine required linear
algebra, and five required probability. Various other
mathematics was required; three required statistics, one
logic, and two advanced calculus. Six required advanced
algebra, but of these six, four did not require course B3
in the requirements for the major.

All of the institutions recommended some form of technical
electives for computer science majors. The most common
situation, occurring at six institutions, was for this matter
to be determined by the student and his advisor. Mathematics
was recommended as a technical elective at four institutions,
statistics at one, electrical engineering at five, industrial
engineering at two, philosophy at one, physics at two, business
at two, economics at one, additional computer science at
four, and linguistics at three.

The question was posed as to what programming languages
mist be learned in the undergraduate program. One institution
responded if was not important. Of the other thirteen,
approximately four languages were required as an average
(this includes assembly and machine language). Thirteen
required FORTRAN, ten an assembler, eight ALGOL, five SNOBOL,
five PL/I, three COBOL, two BASIC, one APL, one LISP, and
one a machine language.

Twenty-three of the institutions indicated they offered

78

service courses. Three departments offered dnly one service

course, six departments offered two, six offered three,

six offered four, one offered seven, and one offered eleven.
Among service courses offered were the following titles:

Survey of Computer Science

Introduction to Computer Science

Algorithmic Approach to Computing

Computers and Society

Introduction to Computing for Business Students

Non-numerical Programming

Hybrid Computing

Higher Level Languages and Their Applications

Machine Organization and Programming

Programming for Engineers

Programming for the Biological and Agricultural
Sciences

Programming for Students without Mathematical
Background

Numerical Methods for Engineers

Programming for Social Sciences

Introduction to Computing for the Humanities

Information Storage and Retrieval

Data Processingd

Finally, questions were raised about the master's
program. Twenty-five institutions responded to these inquiries.
In general, admissions to the master's program required
a bachelor's degree with a B average. Twelve institutions
listed specific computer science courses for entrance, with
one institufion requiring a major. Of those not requiring
a major, the requirements ranged from two to five computer
science courses. Thirteen institutions made specific mathematics
requirements, the usual being a calculus sequence, linear
algebra, and selected advanced courses.

While the above represents the minimum entrance requirements,

5. Ibid., 36.

79

the question was also raised as to what the Mysual” background
was for students entering the program. The "usual" background
indicated was a bachelor's degree in mathematics, electrical
engineering, or one of the physical sciences. Four institutions
indicated a bachelor's degree in computer science was "normal"
and almost all the institutions indicated at least two courses
in computer science was "usual'.

A listing of the core requirements for the master program
was also requested. The answers were too diverse for
statistical interpretation, and are individually listed in
table 4-9.

Walker [181] conducted a survey of computer science
departments in the Fall of 1972. Questionaires were circulated
to 493 schools in the United States and Canada asking about
various aspects of the computer science curricula. Approximately
60% responded with 158 responding to questions on the under-
graduate program, 95 on the masters program and 58 on doctoral
programs.

To give some perspective to the results the type of

institution was asked on the questionaire:

type of institution® % responding
junior college 1
vocational school 0
four year college 15
College offering a limited

amount of graduate work i8
University 66

6. Terry M. Walker, "Computer Science Curricula Survey",
SIGCSE Bulletin 5, 4 (December 1973), 28.

Core Courses of Master's Program/ Table 4-9
Institution Requirements
1 No specific required courses
2 Programming languages, numerical analysis, computer design, logic and
computational theory, and systems
3 Varies
4 Machine organization, introduction to sequential machines, advanced
programming techniques, numerical analysis, non-numerical algorithms
5 Hardware, numerical analysis, computers and programming, switching
theory
6 No specific core
7 Artificial intelligence, furndamentals of computer mathematics, theory
of computation, programming systems, computer systems
8 Numerical analysis, theory of computation, data structures, systems
programming, compiler construction
9 Undergraduate program plus systems, computer languages and information
processing
10 Numerical analysis, computer organization, introduction to
linguistics, information storage and retrieval, systems programming,
engineering, psychology
11 Compilers and computer languages, algorithm specification,
computability, survey of computer algorithms
12 None listed
13 Numerical solution of differential equations, numerical linear
algebra, advanced language structure and theory, advanced hardware
concepts
14 Programming systems, logic and computability, switching theory,

compiler design, systems theory, operations research, evaluation of
computer systems

7. Gerald L. Engel, "Input From ACM Curriculum Committee on Computer Science",
SIGCSE Bulletin 3, 4 (December 1971), 35-36.

08

Table 4-9 (continued)

Institution Requirements

15 Switching theory, computer organization, compiler construction, theory |
of computation, numerical analysis '

16 Data structures, programming languages, computer organization, theory
of computability, numerical analysis

17 None listed

18 Modern algebra for engineering, numerical analysis, programming
systems design, theory and design of digital machines

19 Switching theory, sequential machines, formal languages, systems
programming, advanced computer organization, programming languages,
compiler construction

20 Programming, structures, automata, artificial intelligence

21 Data representation and manipulation, data processing and file
management, programming systems, software engineering laboratory,
numerical analysis

22 Two of four courses in three of the following areas: numerical
analysis, language and information processing, computer systems,
theory of computing

23 Continuous systems, discrete systems, optimization and evaluation,
structure of algorithmic languages, computer systems

24 Data structures, programming languages, compiler construction,
operating systems, information retrieval, theory of computing,
numerical analysis

25 Computer systems and organization, language translation and compiler

construction, list processing and string manipulation languages

T8

.82
The respondents were also asked to reflect on the usefulness

of the reports of the ACM Curriculum Committee:

Usefulness of C3S reports8 % responding
Very helpful 54
Moderately helpful 44
Not very helpful 9
Not considered 14

In regards to courses information was requested on the
following titles. Designations in parentheses are the correspond-
ing courses of "Curriculum '68", with M referring to mathematics
courses recommended: 9

Computer Appreciation

Introduction to Data Processing
Introduction to Computer Science (Bl1l)
Calculus (M)

Differential Equations (M)

Linear Algebra (M)

Discrete Structures (B3)

Probability and Statistics (M)
Operations Research

Machine and/or Assembly Language (B2)
Data Structures (Il)

Computer Organization and Design (I3)
Programming Languages (I2)

Numerical Analysis (I8)

Advanced Numerical Analysis (I9)
Compiler Construction (IS)
Information Theory and Coding
Computers and Society

Operating Systems and Design (I4)
Information Retrieval

History of Computer Science
Time-sharing Systems Design

Symbol Manipulation and Text Processing
Simulation and Modeling (A4)
Computer Graphics (A6)

Process Control

Real-time Systems Design

Data Processing and File Management
Computer Center Administration

8. Terry M. Walker, "Computer Science Curricula Survey",
SIGCSE Bulletin 5, 4 (December 1973), 28.

9. Ibid., 20.

. 83

Legal Aspects of Computers

Artificial Intelligence and Heuristics (A9)
Theory of Computability (A7)

Sequential Machines (I7)

Formal Languages (Al)

Large-Scale Information Processing Systems (A8)
Switching Theory (I6)

Analog and Hybrid Computers (A3)

Programming Techniques

Management Information Systems

Under each course area heading the question was asked
if the course area was (1) required, (2) allowed (but not

required), (3) not allowed, or (4) no courses offered.

. The bachelor's, master's, and doctoral programs were considered

separately. Since these descriptions referred to "course
areas", a one-to-one correspondence to the courses of
"Curriculum '68" is, of necessity, somewhat rough. Nothing
clearly identifiable as Numerical Calculus (B4) or Advanced
Computer Organization (A2) appeared in the list. Table
4-10 presents the course data for courses similar to those
of "Curriculum '68'", Table 4-11 presents the data for
mathematics courses. Table 4-12 presents course data, for
additional courses considered in the survey. The programming
languages required at the various levels are summarized in
Table 4-13.

The survey asked what service courses were offered by
the responding departments. This information is given in
Table 4-14.

A list of possible objectives was given for the various
programs, and the respondents were asked to rank them in

order of importance. For the undergraduate program the

‘v’ﬂsv
)

"Curriculum '68" CoursesliO Table 4-10
Undergraduate (%) Master's (%) Doctoral (%) |
P & = = Py o =2 = Py t = =
slele&lalalalalal alal| ala |
Elal=lagleldlelal Blal 2]
Course g | S| Elald| S| ElR] gl 5| B|W |
Sle gl gl ole) &) s g |
32 2|2 213
Bl. Introduction to 77 7 3114 17 11y 55 | 17)) 13 | 18 | 50 |20
Computer Science
B2. Machine and/or 82 13 1 50 411 31 | 25 3 33 39 | 25 4
Assembly Language
B3. Discrete 43 | 34 1] 22) 30} 45 | 12 | 13§ 23 53 16 9
Structures
Il. Data Structures 58 | 22 0l 2114 41 | 47 8 41 33 | 56 7 4
I2. Programming 72 | 25 0 34 43 | 47 6 41 40 54 4 2
Languages
I3. Computer 54 | 30 O] 15| 45| 48 3 3t 39 | 53 7 2
Organization and
Design
I4. Operating 31 } 45 1] 24 30 64 0 6 30 70 0 0
Systems Design
I5. Compiler 20 | 53 1] 254 221 75 0 3f 30 | 70 0 0
Construction
I6. Switching Theory 19 | 36 14]44 1) 11] 73 2 114 15 | 76 4 5
I7. Sequential 12 | 40 1148 § 13| 72 O | 15§ 21 | 71 0 7
Machines

10. 1bid., 20, 22, 24.

¥8

Table 4-10 (continued)

Undergraduate (%) Master's (%) Doctoral (%)
slo|s|5|8lcls|lslslels|s
0 () at ot 9 o et ct Q o ot et
= Q 0 c 0
% ct = ®) . I s o e ot e
Course 3 I . Fh o e = Fh H H. - 2
o < = Hh o < = Hh 0 < = h
o, o Q o taf o 0) o, o Q o
£ H £ = £ 13
o) o)))
Q fa% o o o, o
I8. Numerical 471 47 1 S 2871 65 7 OfF 23] 67 111 0
BAnalysis
19. Advanced 71 70 2 1211 107 87 0 3 16 | 82 0 2
Numerical Analysis
Al. Formal 18 50 1{ 31f§ 251 66 0 9 30| 63 0 7
Languages
A3. Analog and 5] 36 11 59 4 53 0 | 43 4 66 0 | 30
Hybrid Computers
A4, Simulation and 13 60 11| 26 14 74 0 13 11| 81 0 9
Modeling
A5. Information 14} 45 01} 41 7 66 0 28 11| 67 0 23
Retrieval
A6. Computer 1] 32 1] 66 51 49 0 | 46 4 63 0 34
Graphics
A7. Theory of 7 38 1 54 17 64 0 18 28 65 8] 7
Computability
A8. Large-Scale 51 33 11 61 5 56 0 [39 51 65 1 0 |29
Information
Processing Systems
A9. Artificial 1 40 1 57 6 80 0 14 7 86 0 7
Intelligence and
Heuristics

S8

wﬂr
4

Mathematics Courses

11

Table 4-11

Undergraduate (%)

Master's (%)

Doctoral (%)

o) m = = 2 jus! = = ol om = =

()] | (@] (@] (] = (o] O (V] = O O

bel Q = a9 o ct o 8 e ot &t

Course Area =g i QI K) Z 2 el B = 2

o < i | o < o Hh o < - h

a | @ o @ 0. o o o a |l o o ®

£ = £ B £ =

()] (1]])] (] [

[a N [o 8 0, [o) 0, [a B

Calculus 801 61 T [3 29| 24 4L | 6§ 21| 31| 40 | &

Differential 44 50 1 4 16 52 29 2 16 51 29 4
Equations

Linear Algebra 55 41 1 3 31 49 17 3 32 46 20 2

Probability and 53 46 0 1 25 68 6 1 19 68 9 4

Statistics

11. ZIbad.

98

Additional Coursesl?

Table 4-12

Undergraduate (%)

Master's (%)

Doctoral (%)

[0 I~ Q c 0
Course Area ,*:5' l‘:'r }:—" IQh g lq }:E IQh g l‘j E E)h
o < = +h o < o Hh 0 < f~ h
o. o Q o 0. o o)) o, o o) o
£] £ s £ r
))))))
¥ o o o o Q.
Computer 14 191 12 55 5 11 | 37 | 48 2 91 38 51
Appreciation
Introduction to 381 21 91| 32 12 17 51 | 20 71 20 | 47 | 25
Data Processing
Operations Research 20 59 O] 214 14 72 3 10 51 81 5 9
Information Theory 91 48 11 45 8 69 0T 25 111 82 0 7
and Coding
Computers and Society 2 40 3 55 2 27 18 53 0 30 15 56
History of Computer 114 11 0] 78 3 8 6 { 83 0} 11 51 84
Science
Time-sharing Systems 7 37 0 57 9 57 0 33 5 70 0 25
Design
Symbol Manipulation 10 37 0 53 6 64 1 29 11 73 2 14
and Text Processing
Process Control 1] 24 0 75 1| 38 0 61 4 { 47 0 | 49
Real-time Systems 6| 29 0] 66 5 52 01 43 41 60 0| 36
Design
Data Processing and 211 51 1] 27] 10 | 59 1 129§ 111} 63 01 27
File Management
Computer Center 5| 18 0 76 11 25 11 73 2 22 0 76
Administration

12. Ibid.

L8

Table 4-12 (continued)

Undergraduate (%) Master's (%) Doctoral (%)
s, ju = | = 2, ! = 2 . m i = 2
o i o) o o o 0o o o iy 6))
glglalalelalalalelalale
sl d (Bl vlal2l sl dli8 8
Course Area o < i o < o |l o < = Hh
o, © o o o ® 0 ® o o o ©
£ s : £ H £ H
o o o i} o® ®
ol o Q. o o, !
Tegal Aspects of 0 5 01 o1 2 8 1| a8 Z 9 0] 88
Computers
Programming 47 32 0 21 17 48 5 30 16 54 7 23
Techniques
Management 15 | 42 11 42 41 54 11| 40 2 53 0] 45
Information
Systems

88

Programming languages In Which Proficiency Is Expected Upon Graduationl3

Table 4-13

Language

Undergraduate (%)

Master's (%)

Doctoral (%)

Some Machine or

Assembly Language 80 77 78
ALGOL 22 43 48
BASIC 24 22 19
FORTRAN 90 82 86
COBOL 54 25 17
PL/I 36 37 36
APL 15 21 19
MAD 1 0 0]
GPSS 14 16 7
LISP 8 22 31
SNOBOL 15 25 34
SIMSCRIPT 4 6 3
Others 17 9 9

13, 1bid., 21, 27, 24.

68

Service Coursesl4

Course

Offering (%)

Computer Appreciation 40
Introductory Computer Science 78
FORTRAN Programming 84
COBOL Programming 48
APL Programming 11
PL/I Programming 24
ALGOL Programming 8
BASIC Programming 29
Computers and Society 28
Machine and/or Assembly

Language Programming 59
Other 23

i4. 71pbid., 25.

Table 4-14

06

91

following ranking occurred from highest to lowest: L5

1)
2)

3)
4)

5)
6)
7

8)

Prepare a person for a job as a systems analyst

Prepare a person to pursue a graduate degree in
computer science

Prepare a person for a job as a scientific programmer

Prepare a person for a job designing computer
software systems (tied with 5)

Prépare a person for a job as a commercial programmer
(tied with 4)

Prepare a person for a job teaching computer science
at the secondary school level (tied with 7)

Prepare a person for a job as a data processing
manager (tied with 6)

Prepare a person for a job designing computer
hardware systems

In terms of objectives for the master's program, the ranks

were as follows, from highest to lowest:l16

1)

2)
3)

4)
5)

6)
7)

8)
9

Prepare a person for a job designing computer
software systems

Prepare a person for a job as a systems analyst

Prepare a person to pursue a doctoral degree in
computer science

Prepare a person for a job as a scientific programmer
Prepare a person for a job teaching computer science
at the college or junior college level

Prepare a person for a job as a commercial programmer
Prepare a person for a job designing computer hardware
systems

Prepare a person for a job as a data processing
manager

Prepare a person for a job teaching computer science
at the secondary school level

For the doctoral programs there was the following ranking,

from highest to lowest:l17

1)
2)

3)

Prepare a person for a job teaching computer
science at the college or university level
Prepare a person for a position conducting full-time
computer research
Prepare a person for a job designing computer software
systems

15, Ibid., 19-20.

16. Ibid., 21.

l7l' Ibid., 230

4]

4) Prepare a person for

5) Prepare a person for
hardware systems

6) Prepare a person for a job as a scientific programmer

7) Prepare a person for a job as a data processing manager

8) Prepare a person for a job as a commercial programmer

job as a systems analyst
job designing computer

o]

An additional survey of computer science curricula
was conducted by Vickers [179]. This data is quite difficult
to analyze and adds little to the information in the studies
referenced. Additional information is also available in
descriptions of specific programs found in department
brochures and in papers such as Barnes and Gotterer [23],
Bauer [261], Cowan and Roden [561, Gorsline and Green [881],
Mapp [1261, Mathis and Kerr [131], Rahimi and Hedges [151],
Roth [157], Schwenkel [1621], and Semple [165]. These papers
and descriptions, however, do not give the overall perspective
and comparison needed in this study, and the three surveys
cited remain the fundamental sources regarding curriculum
implementation.

While the studies we have considered are concerned with
what is offered in a curriculum, they do not evaluate programs.
To do this three surveys of graduates of computer science
programs will be considered. Though this is not an exhaustive
evaluation of graduates of such programs, it does represent
all that has been published regarding this aspect of computer
science education.

Barﬁes and Gotterer [24] in 1971 repcrted several statistics
relating to students having completed a bachelor's degree at

The Pennsylvania State University. This work reflected on

93

the professional activities of the 35 respondents to the
questionaire. These individuals are graduates of the program
from its inception in 1967 to 1970, Of particular importance
is the ranking of courses taken as to their value to the
professional. Each course was to be ranked from O - 9

with 9 very valuable and 0 almost useless. These results

are reported in Table 4-15.

Of interest also is that 34 of the respondents indicated
that if the opportunity again presented itself they would
major in Computer Science at the Pennsylvania State University.

A companion study was conducted by Gotterer and Barnes [89]
on graduates of the master's program at The Pennsylvania State
University for the years 1966 - 1972. Responses were obtained
from 70 of the 136 graduates of this time period. The course
rating scheme used in the study of the bachelor's program
was also used in this study and is reported in Table 4-16.
"Curriculum '68" equivalents are not included since the higher
level courses do not have clear equivalences. Again the rating
was 0 useless and 9 most useful.

Some additional questions are of interest in explaining
the results of the ratings. The respondents were asked

for reasons for considering a course valuable:l18

18. Malcolm H. Gotterer and Bruce H. Barnes, "The Computer
Science M. S. Graduate™, SIGCSE Bulletin 5, 1 (February 1973),
109,

Undergraduate Course Rankings19

Table 4-15

Course Title Approximate "Curriculum '68" | Number Average

Equivalent "1 Taking Rating
Introduction to Bl 52 6.6
Programming
Assembly Programming B2 32 7.3
Numerical Calculus B4 14 3.6
Introduction to Data Not Applicable 5 6.8
Processing
Information Structures 11 30 6.6
Systems Programming T4 32 8.0
Structure of Programming 12 32 5.5
Languages
Graph Theory Not Applicable 21 3.0
Numerical Computation 18 26 3.0
Matrix Computation 19 13 2.8
Logic and Computability Not Applicable 10 3.5

19. Bruce H. Barnes and Malcolm H. Gotterer, "Attributes of Computer Professionals”,

in Theodore C. Willoughby (ed.), Proceedings of the Ninth Annual Computer Personnel
Research Conference (ACM, New York, 1971), pp. 172, 174.

6

i

Master's Course Rankings20 Table 4-16
Course Number of Average
Responses Rating
Information Structures 29 7.31
Systems Organization and 49 7.69
Programming :
The Structure of 41 6.12
Programming Languages
Combinatorics and Graph 27 4.14
Theory
Information Theory and 8 4.87
Error-Correcting Codes
Numerical Computations 55 35.31
Matrix Computations 6l 3.16
Logic and Computability 25 3.96
Mathematical Machine Theory 16 4,00
Theory of Automata 33 3.78
Algebraic Theory of Automata 10 3.70
Structure of Artificial 57 6.14
Languages
Systems Programming 59 7.06
Nonarithmetic Programming 54 5.77
Information Processing Systems 58 5.91
Theory of Graphs and Networks 15 4.33
Information Retrieval 13 5.89
Numerical RAnalysis I 10 4,60
Numerical Analysis IT 8 4.62
Combinatorial Systems 2 7.00

20. Malcolm H. Gotterer and Bruce H. Barnes, "The Computer Science M. S. Graduate",
SIGCSE Bulletin 5, 1 (February 1973), 108.

S6 -

Table 4-~-16 (continued)

Course Number of Average
Responses Rating

Approximation Theory 4 2.22

Numerical Solution of Partial 5 4.40

Differential Equations

Algebraic Coding Theory 3 3.33

Theory of Formal Languages 11 5.36

and Automata I

Theory of Formal Languages 6 4.50

and Automata IT

96"

97
Reason No. of Responses
Can use in Present Job 41
Good Foundation or Background 16

Course was "realistic™
Personal Interest

Gave Insight into Computing
Permitted Research Opportunity
Liked Professor

Other

OWWD DN

The respondents were also asked to give reasons for negative

responses:21

Reason No. of Responses
Not Practical or Useable 44
Too Theoretical 10

Lack of Interest
No Relevance
Poorly Taught
Other

NPy

Finally the respondents were asked to suggest courses that
should be added to the Curriculum:22

Course No. of Responses
Systems Programming 12
More Depth in Basic Languages
COBOL
Operations Research
Data Processing Techniques
Hardware Characteristics and

Utilization

Data Communications
Information System Design
System Analysis and Design
Other

(e N RV NN ~Nur g

As with the bachelor's degree program, the vast majority
of the respondents indicated that if they had it to do over
again, they would enter the master's program at The Pennsylvania
State University.

A similar study of the Undergraduate program at The Ohio

21. 1bid., 109.

22. 1Ibid.

. 98

State University is reported by Kalmey [114]. Information was
requested from the graduates of the program from 1968 to 1973.
88, or about 20% responded.

The 0 - 9 (0 useless, 9 most useful) rating scale of
courses was used in this study also. Mathematics and Statistics
courses involved in the curriculum were also considered with
computer science courses. Ohio State offers undergraduate
degrees in the College of Engineering, the College of Arts
and Science, and the College of Administrative Science.

The responses were partitioned among these various programs.
The results are given in Table 4-17.

Additional material was requested to identify areas
the respondent felt were important to him and the degree
of emphasis needed in these areas. The results are reported
in Table 4-13.

Respondents were asked what additional courses they
would like to see in the curriculum. These results are
reported in Table 4-19.

As with the Penn State studies there is an apparent
feeling among the graduates of such programs that greater
emphasis should be placed on application areas, and in
theoretical areas, on ways in which theory relates to practical

applications.

Summarz

The relation of "Curriculum '68" to existing programs

is seen through three studies of existing curricula, and

Undergraduate Program Course Evaluation23 Table 4-17
Program Total
Engineering| Arts and Sciences| Admin. Science
A b A o)
Course o ?; o oF 3 ?;- § ?;
gl 5| B % S 4
=] Q 3 Q 3 Q = Q
(‘3 ® ® ®
w 12}] 7]
Intermediate 27 7.6 46 7.8 5 6.8 78 7.7
Digital Computer
Programming
Computer Systems 26 7.0 40 7.7 3 7.1 69 7.4
Programming I
Data Structures 10 7.2 20 7.5 - - 30 7.4
Computer Programming 14 6.5 35 7.2 6 6.8 56 7.0
and Data Processing II
Computer Systems 15 6.8 29 7.1 1 5.0 45 7.0
Programming II
Digital Computer 24 7.1 41 7.0 3 5.6 68 7.0
Programming I
Computer Programming 9 7.6 21 6.6 6 0.8 36 6.6
and Data Processing T
Survey of k 22 6.7 32 6.0 4 7.8 58 6.4
Programming Languages
Modeling of 9 6.6 17 6.1 1 5.0 27 6.2
Information Systems
Individual Studies 11 6.5 18 5.9 1 7.0 30 6.2
(Graphics, Mini, etc.)
Programming Languages 11 5.8 19 5.7 1 7.0 31 5.8

23. Donald L. Kalmey, "Profile of a Computer and Information Science B. S. Graduate",

SIGCSE Bulletin 6, 1 (February 1974), 43.

66

Table 4-17 (continued)
Program Total
Engineering|{ Arts and Sciences Admin. Science

> & & & Y & > &
Course % . 9 o 9 o 9 o,
s & 8 & |8 | & | 5| &
4] 4] w 7]
) o) o)
72} 4] o w
Linear Optimization 11 5.9 16 5.7 1 5.0 28 5.8
Techniques in
Information
Processing
Compiler Design and 8 6.1 20 5.4 1 9.0 29 5.7
Implementation
Digital Computer 13 5.4 18 5.5 - - 31 5.5
Organization
Algebraic Structures 22 5.6 34 5.3 1 5.0 57 5.4
Mathematical 27 5.4 39 5.2 6 6.3 72 5.4
Statistiecs I
Modern Methods of 10 5.5 19 5.1 2 6.0 31 5.3
Information Storage
and Retrieval
Fundamental Concepts 11 5.6 26 5.5 3 1.0 40 5.2
of Computer and
Information Science
Linear Algebra 27 5.4 40 5.1 2 5.0 69 5.2
Mathematical 27 5.2 28 5.1 6 5.6 61 5.2
Statistics II
Survey of 27 5.4 44 4.9 2 6.5 73 5.1 }
Numerical Methods P
(o]

B A8

Table 4-17 (continued)

Program Total
Engineering] Arts and Sciences| Admin. Science
D & > g % g > &
Course A ,‘I 2 1) RS a4 9 o
0 5 o o s) o 0 =
3 «Q 3 «Q ja] «Q = Q
fS o o 8
4] V)] [42] w
Introduction to 28 3.9 44 5.6 6 4.1 78 4.9
Information Storage
and Retrieval
Differential 26 5.9 40 4.3 3 4.3 69 4.9
Eqguations
Advanced Caleculus 15 6.0 26 4.1 1 5.0 42 4.8
Numerical Linear 9 5.1 20 3.6 - - 29 4.0
Algebra
Numerical Solution 6 4.8 14 2.7 1 0 21 3.2
to Ordinary
Differential
Equations

10T -

102

‘v ‘*PIQT "2

T 9z JA L 8T ¢e 4 ¢ 0 LT T SSa7T PoaN
LZ ¢S (%74 S2 Ld 0% 81 9 |4 6S 0% "X°0
¢S ¢ 97 8¢ 44 9T 8¢ HT LS 7 TS SJd0W PasN STe30]
T T T T 14 g 0 T 0 T T SSTT PoOSN
4 S 4 ¢ T ¢ ¢ ¥ 4 S 4 A0 9dUvLOg
T 0 g T 0 T ¢ T ¢ 0 3 IO Po8N | 9ATIRIISTUTWPY
g 8T 9 S QL 9T T T 0 ST 0 SSVT PooN
FAN 6¢ L2 ¢t ¢T 9T 9¢g LS 0T 62 9T X0 90Ul’L s
¢¢ 4 9T N4 AN 8 0¢ 0T 9¢ ¢ ¢e 9JdOW PoaN pue siay
0 L 9) T 174 S T T 0 T 0 SS9 Po°oN
TT 6T 02 6 ¢T TT 6T ¢l TT S¢ AN A0
61T T L 9T 0T L S ¢ LT T ST SJION P3SN butassutrbug
(%] ot m o
0 o o o S P
~ [« 4] O P rHn [= o)}
3] 12 4 o |] 1] & me a © 0 o
1%} m m o> | P (@] L | N) 1= O A U]
2 I5EQa|8 |2 [Bg |52 IES | & | 28 |55 5
o S los s m N H O B QW © © Q ~ a P BSdyY Wedbodd
s G lES5 5| & 55|52 |85 |55 | SE |22
_m m Hnp {wm O e an H.L num = AL O w
8T-v °TqeL pgobeasao) 3o oaabaq pue @ourjaodul JO sSeaay

Additional Courses Recommended for the Curriculum?5 Table 4-19
Course College
Engineering | Arts and Administrative Total
Science Science
PL/I 2 1 2
COBOL) 3 2 2
Data Communication
and Teleprocessing
Business
Similation
Projects .
Logic Design and
Architecture
Utilities and Job
Control Language’ -
Operations Research -
Data Base Structure -
Hands-on Experience 1

N N - N
HIE o

! [
N N P ~J ~jon

N
*—l
1

Ul

Nt o
RN I
N ES N

¢OT

25. 1Ibid.

104

three studies of graduates of computer science programs.

The three studies of existing programs show a strong relation-
ship between courses offered and those of "Curriculum '68",
though, of course, there is no implication of a causal relation-
ship. The Hamblen study of all post-secondary institutions
shows that better than 52% of the courses listed in computer
science in 1971-72 were comparable to courses in "Curriculum
68", Engel's 1971 study shows that most of the courses of

"Curriculum '68" are offered as specified or in similar form

in the twenty-six institutions involved in the study. These

results are also verified in the Walker survey.

The first two of the basic courses Bl, Introduction to
Computing and B2, Computers and Programming are offered in
most cases. Course B3, Introduction to Discrete Structures,
does not seem to have as much acceptance. Hamblen reported
that only 71 such courses were available in 1971-72 as compared
with 1778 for Bl and 728 for B2. 1In Engel's study 19 of the
surveyed departments offered the same or a similar course,
but B3 was the least commonly offered of the basic courses.
Walker's study also showed B3 to be the least offered of
the basic courses, being required in 43% of the institutions.
Course B4, Numerical Calculus was offered in more cases
than Discrete Structures with 405 courses reported in the
Hamblen Survey, however, its offering was considerably below
that of courses Bl and B2.

Considering the intermediate level courses of "Curriculum

'68", Il, Data Structures, I2, Programming Languages, I3,

105

Computer Organization, I4, Systems Programming, I5, Compiler
Construction, I8, Numerical Analysis I and I9, Numerical
Bnalysis II were offered with the greatest frequency. 1In
all three reports I6, Switching Theory and I7, Sequential
Machines had the smallest offerings; in the Hamblen study
121 courses similar to I6 were offered and 36 similar to I7;
in Walker's study 55% offered I6, 52% I7; and in Engel's
study 14 of 26 offered I6 and 16 of 26 offered I7. In Engel's
study the other seven intermediate level courses were offered
- with consistency at the institutions surveyed, I2, I3, and
I9 offered in 22 cases, I8 in 23, Il and I4 in 24 and IS
in 26. For these same courses in Walker's Survey I2 was the
most popular, being offered in 97% of the institutions with
I5 the least popular being offered in 73% of the institutions.
In Hamblen's study these seven courses followed a fairly
wide range, I4 offered in 326 cases, I8 and I9 in 269, I2
in 239, I3 in 221, Il in 146, and I5 in 135. It is interesting
to note that I4, System Programming while most popular in
the Hamblen list was in position 6 in Walker's study, while
programming languages, third in Hamblen's list was first on
Walker's. In both cases the Data Structures courses was
in the middle, though its popularity, in terms of offering,
increases from the Hamblen to the Walker study.

The three studies indicate a high degree of popularity
in the offerings of the advanced courses A4, System Simulation,
Al, Formal Languages and Syntactic Analysis, A9, Artificial

Intelligence and Heuristic Programming, A5, Information

o o

106
Organization and Retrieval, A2, Advanced Computer Organization,
and A7, Theory of Computability. Of these, course A4, System
Simulation presents some difficulty in that it was not clearly
identifiable as such in the Hamblen or Walker study, and
was reported as offered in only 13 of the 26 institutions in
the Engel study. 58 offerings of Theory of Computability,
Course A7, were reported in the Hamblen study, however it
was reported in 25 of the 26 institutions in the Engel
study and in 81% of master's programs (93% of Doctoral programs)
in Walker's work. Courses A3, Analog and Hybrid Computing,
A6, Computer Graphics, and A8, Large Scale Information
Processing Systems were low in terms of number of offerings
in all three studies.

Courses other than those listed in "Curriculum '68"
appeared in the surveys of Hamblen and Walker. In Engel's
survey, a listing of service courses was obtained, but other
information on these, and information regarding other courses
not in "Curriculum '68" was not considered.

In terms of service courses a number of different courses
were listed as offered by the responding departments. In
Walker's survey, including 283 responses, Computer Appreciation
was offered in 40% of the institutions, and Computers and
Society in 28%. The Introduction to Computer Science (Course
Bl) was used as a service course at 78% of the responding
institutions and a course similar to B2 served as a service
course at 59% of the institutions. In addition a variety of

language courses are reported under service courses the

107

most popular being FORTRAN (84%) and COBOL (48%).

In Hamblen's survey all the courses listed in "Curriculum
168" were also listed as serving as service courses. In
addition special applications courses were listed in engineering
applications (456), business applications (228), and the
Humanities (88). 208 courses in Computer Appreciation were
listed, more than half of which served as service courses
for non-science students. 257 Introductory Systems Analysis
courses were also listed though these were heavily (154)
in two year schools where they were required in the major
program.

In the data processing area, Hamblen's survey lists
four courses two of which, Data Preparation, and Unit Record
are primarily offered in two year schools. The other two,
however, were more generally offered. The Introductory Course
in Data Processing was offered at 457 institutions (246 two
year institutions) and was required for a computer science
major in 56 programs. An advanced course in data processing
was offered at 109 schools (42 two year institutions), and
required in 30 computer science programs. The Introduction
to Data Processing was considered in the Walker study, being
listed as required or as an elective in 59% of the undergraduate
programs, 29% of the master's programs and 27% of the doctoral
programs.

Both the Hamblen and Walker survey list a variety of
the courses being taught which do not have corresponding

courses in "Curriculum '68". Hamblen's survey reports courses

f
§
]
{

.

108
in hardware such as A First Course in Computer Design, Advanced
Course in Computer Design and Advanced Computer Organization;
courses in the general area of information systems such as
Introductory Information Systems Design, Advanced Information
Systems Design, Management Information Systems, Data Base
Management, File Organization, Introductory Operations
Research, and Advanced Operations Research; and other courses
such as Automata Theory, Data Communications, Process Control,
and Management of Computer Centers or Information Processing
Departments. To these courses, Walker's survey indicates
that courses including Information Theory and Coding, History
of Computer Science, Time-Sharing Systems Design, Symbol
Manipulation and Text Processing, Real-Time Systems Design,
Legal Aspects of Computers and Programming Techniques were
offered at a significant number of institutions.

Though a full understanding of the actual structure of
the undergraduate program is difficult to determine from the
data of the three studies, the material of the Engel survey
and the Walker survey seem to indicate a concentration of the-
requirements of many programs around the core of "Curriculum
68", Exceptions seem to be in the areas of discrete structures,
numerical calculus, and a lack of the requirement of the
intermediate level courses. The mathematics required is quite
close to the recommendations in many of the institutions.
Since the graduate programs of "Curriculum '68" are not
specified in detail, it is not possible to come to firm

conclusions regarding these programs from the data of the surveys.

109

While the number of offerings represent one measure of
the strength or weakness of the programs, another is the
reactions of the graduates of the program looking back at
their experience. In the Barnes and Gotterer paper concerning
bachelor degree graduates, in response to the value of course
work to the professional career of the graduate there is a
rather clear break with the programming related courses
Introduction to Programming, Assembly Programming, Introduction

to Data Processing, Information Structures and Systems Pro-

gramming rated high, while mathematically oriented courses

including Numerical Calculus, Graph Theory, Numerical Computation
and Logic and Computability rated low. The course Structure of
Programming Languages was the only one receiving an effectively
neutral rating. Similar reactions appeared in the Gotterer and
Barnes review of graduates of the master's program. Considering
only those courses receiving more than six responses, highest
rankings went to programming related areas such as Information
Structures, Systems Organization and Programming, the Structure
of Programming Languages, Structure of Artificial Languages,

and Systems‘Programming. More or less neutral rankings

went to Nonarithmetic Programming, Information Processing
Systems, Information Retrieval, and Theory of Formal Languages
and Automata. Low rankings again appeared for the more
mathematically oriented courses such as Combinatorics and

Graph Theory, Information Theory and Error-Correcting Codes,
Numerical Computations, Matrix Computations, Logic and

Computability, Mathematical Machine Theory, Theory of Automata,

110

Algebraic Theory of Automata, Theory of Graphs and Networks,
Numerical Analysis, and Algebraic Coding Theory.

Kalmey's study of graduates of the undergraduate program
reveals something of the same pattern. The highest rankings
as to value to the graduate's professional life went to
programming oriented courses including, Intermediate Computer
Programming, Computer Systems Programming I and II, Data
Structures, Computer Programming and Data Processing I and
IT, Digital Computer Programming I, Survey of Programming
Languages, Modeling of Information Systems, and Individual
Studies. The courses receiving low ratings were primarily
the mathematics courses Differential Equations, Advanced
Calculus, Numerical Linear Algebra, and Numerical Solution
to Ordinary Differential Equations and also Introduction to
Information Storage and Retrieval. Effectively neutral
rankings went to the courses Programming Languages, Linear
Optimization Techniques in Information Processing, Compiler
Design and Implementation, Digital Computer Organization,

Algebraic Structures, Mathematical Statistics I and II,

Modern Methéds of Information Storage and Retrieval, Fundamental

Concepts of Computer and Information Science and Survey of
Numerical Methods.

The recommendations of the graduates of additional work
that should be offered reflects a desire for more practical
material. In the Gotterer and Barnes study work is suggested
in systems programming, additional language instruction,

COBOL, operations research, hardware, information systems

F-'s:::.~~

111

design and systems analysis and design. In Kélmey's study
much the same trend occurs with requests for material involving
PL/I, COBOL, data communication and teleprocessing, business,
simulation, special projects, logic design and architecture,
utilities and job control language, operations research, data

base structure, and hands-on experience.

B e —

1

T

112

Chapter 5 - Individual Courses

Chapter 4 indicates several areas where course recommenda-
tions were not made in "Curriculum '68", and where activity
is occuring, and, conversely, there were courses recommended

whose utility, based on experience, is open to some question.

These matters will be considered again in Chapter 7. Additionally,

courses have been proposed in curriculum work conducted subsequent

to the publication of "Curriculum '68"; these are discussed
in Chapter 6.

In this chapter, consideration will be given to courses
which have been specified and discussed in the literature
subsequent to the publication of "Curriculum '68". These
reports primarily represent experience in the teaching of
the material, and additional consideration of the areas of
the curriculum which, for one reason or another, proved
difficult to implement.

Included under this heading are courses dealing with
a variety of areas of the curriculum including the first
course, discpete structures, service courses, operating
systems, computer organization, minicomputers, systems analysis,
software engineering; computer design and architecture,
program debugging, advanced programming, and computers
and society.

Discussion of the first course have been quite extensive
and have inevitably also raised questions relating to the

teaching of service courses. Among the questions raised are

113

whether such courses should be taught separately to different
groups of students or combined, whether they should be exclusively
taught by the Computer Science Department or by various
departments, which languages should be included in such

courses, the general content of the first course, and

pedagogical issues.

Brady [31] points out the advantages of programming
courses being offered in a number of different departments.
In a panel at the First SIGCSE Symposium, Sterling and
Pollock [171] described an introductory sequence for all
students, while deCampo [59] describes special courses for
humanists. In the same panel Brillinger and Cowan [32]
describe the importance of a consolidated program emphasizing
student oriented software.

At the Second SIGCSE Symposium Adams and Haden [1]
reported a need to split introductory courses in programming
while offering common courses in "computer appreciation™.
Ralston [152] stresses that the particular language selected
for teaching the first course is not a significant factor.

The diécussions of the first course continued at the
Third SIGCSE Symposium. Fisher, Hankley, and Wallentine [77]
and Salton [1601] discussed programs in which certain aspects
of the first course are common to all students, with additional
work concentrating on special material appropriate to smaller
groups. In the Fourth SIGCSE Symposium the ideas encompassed
in structured programming are considered in relation to

teaching introductory programming; Gries [93] and Kernighan

114

and Plauger [118]. 1In this same source Sistare and Sondak [168]
describe an individually paced approach to the presentation
of the first course.

Van Dam, Strauss, McGowan, and Morse [1771, also in the
Fourth SIGCSE Symposium, reported on a survey of introductory
programming courses. Twenty-four institutions were contacted
regarding various aspects of the course and the following
summary of such courses was reached:

Using the survey's results, let us now outline
the "typical" introductory programming course at major
American Universities. It is a large, service course
taught by the Computer Science department. The principal
course goal is for the students to become proficient
in a single programming language. This high level
language is either FORTRAN (in the guise of WATFIV or
WATFOR) or P1/I (typically the PL/C or PLAGO subsets).
As perceived by the instructors, the other university
departments are very satisfied with both the goals
and the results of the introductory programming course.
Also the university is very flexible in budgeting enough
computer time (money to meet the course's needs).

To achieve the course's objective each student

must write about 300 total lines of code. This coding

represents about 6 different programming assignments.

At least one assignment requires writing over 75 lines

of code. We estimate that a student averages over 10

hours per week on the course even though the usual

turnaround time is less than 1/2 hour.l

Additional material has been published more specifically
directed to the service aspects of programming courses.
Goddard [84] in the Proceedings of the Third SIGCSE Symposium
considers the problem of computer work, in this case two

courses, used to partially fulfill language requirements

1. Andries van Dam, Clark M. Strauss, Chalres McGowan and Jean
Morse, "A Survey of Introductory and Advanced Programming
Courses", SIGCSE -Bulletin 6, 1 (February 1974), 175.

115
in doctoral programs. In the same source, Bateman and Pitts [25]
address the same question again resulting in two courses,
the first similar to course Bl of M"Curriculum '68" and the
second, advanced programming in a higher level language
appropriate to the students area. Also in the Third SIGCSE
Symposium Proceedings Willoughby [1861 presents data on the
attitudes of business students taking a programming course
taught in a Computer Science Department.

Related closely to the question of introductory courses
and first courses is that of alternatives to a course like
Bl of "Curriculum '68". One such alternative which has
received a good deal of attention, at least by using books
published as a measure, is Computers and Society or Computer
Appreciation.

In the Proceedings of the Second SIGCSE Symposium Lee [122]
describes his course, and summarizes the underlying philosophy
of such courses:

Irrespective of one's personal position on the

role of computers in society, it is indeed desirable

that all college graduates in the coming years have

a realistic even though minimal understanding of how

computers work and how they may be directed to implement

and maintain almost any desired social system. Con-
sequently, the primary purpose of this course on computers
in society is to give an elementary but sound fundamental
understanding of how computers work, what they can do,
what applications of computer technology currently

exist or are now in research consideration, and the

relationships of these applications to the role of man

in society. Thus, the course is conceived as a citizen's

social problems course in which much of the time will

be devoted to documentation of the claim that society

is undergoing a computer revolution and to illumination
of this position by the presentation of several problem

116

areas resulting from computer applications.2

Lee goes on to describe the course which includes a little
programming, an overview of computing, an overview of non-
numeric computation, and discussion of the development and
future of computer applications.

Horowitz, Morgan and Shaw [106] describe a course on
Computers and Society dealing with political, economic,
cultural, social and moral issues. This course however was
designed for computer science students and its purpose
is to give the computer science student an awareness of the
implications of this chosen vocation. Horowitz and Horowitz [107]
at the Third SIGCSE Symposium, describe another approach in
which computer science students and other students are combined
in a team taught interdisciplinary course in Computers and
Society.

Such courses and material is also referenced in Austing
and Engel [221], and the Wheaton Conference [121] which are
considered in Chapter 6. In the former report material
on implications of computing is included in a second course
with programming as a prerequisite. In the latter case,
it was felt that such issues are well handled by inclusion
of material in existing courses, and where resources are short
there is no pressing need to introduce the material as a

special course.

2, Hans E. Lee, "Computers in Society--A Course Description,
Purpose and Rationale', SIGCSE Bulletin 4, 1 (March 1372), 97.

117

Related to programming courses génerally and the first
course in particular is the question of correcting or debugging
a program. Heilman and Ashby [104] observe that while this
is an important area to the practicing computer scientist,
it is neglected in most curricula. Mathis [132] specifies
and discusses a course in debugging which also includes
discussions of various levels of debugging techniques as
well as methods for preparation of less error-prone programs.

The Discrete Structures Course (Course B3 of "Curriculum
'68") has received considerable attention. Although Fischer [76]
claims the course specified in "Curriculum '68" is effectively
taught in most institutions, three papers, Engel and Jones [73],
Yeh, Good and Musser [188], and Tremblay and Manohar [1761,
have addressed this course. These papers have attempted to
delimit the course specifications given in "Curriculum ‘68"
and show how the course can be fit into and motivated at
the elementary level, Tremblay and Manohar conclude that
the topics of discrete mathematics are broad enough, and of
enough significance to the computer science student to require
the equivalént of two semesters. While Yeh, Good and Musser
suggest a one semester course in discrete structures, they,
at the same time, specify a second course in computational
analysis which builds on the discrete structures course,
and covers the topics of computational analysis, computational
correctness, and computing time analysis.

In addition to commenting on the Discrete Structures

course of "Curriculum '68", Fischer [76] considers other

118

courses in the theoretical areas. Switching Theory (I6)
and Sequential Machines (I7), he feels are also well specified
in terms of current practice. The advanced courses Al (Formal
Languages and Syntactic Analysis) and A7 (Theory of Computa-
bility) are in need of attention. Course Al could be made more
practical in nature by encompassing topics in language research
such as parsing methods and abstract families of languages.
The material within A7 with some modifications, such as removal
of recursive function theory and introduction of computational
complexity, analysis of algorithm and program schemata,
could be split into two courses. The first course would
be at the senior-first-year graduate level and carries a
suggested title of "Introduction to Computability Theory
and Formal Languages":
This course is designed to introduce the advanced
undergraduate or first-year graduate to formal systems
of computation (including formal languages) and to give
him a basic understanding of the nature of the unsolva-
bility phenomena which pervade attempts to deduce
correctness of programs equivalence of algorithms, etc.3
The other course, remaining at the advanced level would concen-
trate on computational complexity, analysis of algorithms
and program schemata.
The area of Operating Systems has received a good deal

of coverage, including the detailed report of the COSINE

Committee Task Force on Operating Systems [52]. This report

3. P, C, Fischer, "Theory of Computing in Computer Science
Education", Proceedings of the AFIPS 1972 SJCC (AFIPS Press,
Montvale, New Jersey, 1972), p. 860.

119

gives detailed specifications for eight modules covering the
various aspects of the subjects; Introduction, Procedures,
Processes, Memory Management, Name Management, Protection,
Resource Allocation, and Pragmatic Aspects. Denning [611]
considers ways in which this material can be put together
into a course, and its place within the Curriculum. Additionally,
he compares the work of the COSINE Task Force on Operating
Systems with similar course work in "Curriculum '68":
The course itself is related to ACM's systems

programming course (ACM Course I-4) but differs in

at least two significant ways. First the ACM outline

suggests a "descriptive", case-study approach wheras

this course is organized along conceptual lines.,

Second, ACM's course emphasizes techniques of systems

programming wheras this course emphasizes the principles

of system organization and operation. This shift in

emphasis is made possible by new developments, since

the ACM report predates the appearance of much of the

modeling and analysis material on which this course

is based.4

Work involving the presentation of operating systems
courses were reported prior to the publication of the COSINE
Committee recommendations. Included in these is Engel's
report on the C3S Programming System Workshop of 1969 [69]
which considered courses offered at the University of Pennsylvania,
University of Michigan, University of Iowa, Purdue University,
Stanford University, the University of Texas, Cornell

University, Carnegie-Mellon University, the University of

California, Berkeley, and the University of Illinois. Included

4., Peter J. Denning, Operating Systems Principles and Undergrad-
uate Computer Science Curricula (Computer Science Laboratory,
Department of Electrical Engineering, Princeton University,
Technical Report TR-99, September 1971), p. 10.

120

in this report are course outlines and sample examinations.
The First SIGCSE Symposium also had discussions of this topic
with Denning [60] reporting on work that would be closely
related to the development of the COSINE recommendations,

and Graham [90] reporting on a case-study approach.

Reported work in the operating systems, or systems
programming course area subsequent to the publication of
the COSINE Committee Report has been mainly concerned with
student oriented software for such courses. RAmong the systems
so described are the HMS 5050 [1851, ATOPSS [1751, SLIc [27],
AsSsIST [128, 1291, popss [1801, and MIX [91]. In all these
cases the integration of these pedagogical aids to the
operating systems area is stressed.

Related to the development of the pedagogical software,
is the question of special computing equipment for a computer
science laboratory in which the students have a machine,
independent of the central computing facility, for experimenta-
tion and research. Hunt [109] reported on the situation at
the University of Washington at the First SIGCSE Symposium.

In this case the department has a XDS Sigma 5 dedicated to
student and faculty research. The general philosophy and
requirement for a dedicated departmental computer, or computer
science laboratory is further explored in two papers presented
at the Second SIGCSE Symposium; Eckhouse [65] and Stark [170].

The question of minicomputers and their relationship
to the computer science laboratory is addressed in the April

1972 report of the Task Force on Minicomputers of the COSINE

e

121
Committee [53]. Though originally aimed at Departments of

Electrical Engineering, the report holds considerable relevance

to computer science education:

Today's electrical engineer must be familiar with
the characteristics and operations of minicomputers.
This means that every electrical engineering department
should have at least one minicomputer available for
use as part of the undergraduate laboratory program.
Cost is no longer a limiting factor since it is possible
to obtain a basic system for approximately six thousand
dollars. Once a basic system is installed it can be
slowly expanded by adding peripherals as the use of
the system grows.>

The task force, in justifying this, notes the following eight
educational objectives, of which they feel, only the first
two can be met by the usual central computing facility:

1) To provide training and experience using high
level languages

2) To provide training and programming experience
using machine code and assembly level coding

3) To teach the student the fundamentals of machine
organization

4) To provide the student with an experimental
facility to test the ideas and concepts presented in,
courses on Operating Systems

5) To provide the students with an experimental
facility to test the ideas and concepts learned in
courses dealing with interfacing and data processing

6) To provide the student with an experimental
facility to test out ideas and concepts learned in
courses on digital process control, digital testing
and equipment monitoring

7) To provide students with an opportunity to
understand by hands on experimentation, the relationships
and interactions between hardware and software and
the problems presented by real-time programming problems

8) To provide the student with an ogportunity to
utilize the computer as a system element.

5. COSINE Committee, Minicomputers in the Digital Laboratory
Program (National Academy of Engineering, Washington, D. C.,
April 1972), 22,

6. Ibid., p. 5.

122
In the Proceedings of the Third SIGCSE Symposium Marsland
and Tartar [127] discuss their experience in teaching a
course in minicomputer systems utilizing a laboratory situation
similar to that described by the COSINE Task Force.

The COSINE Committee's task force on the Computer
Organization Course published a report in October 1968 [481.
The recommendations outlined in this report give more detailed
course outlines, but cover roughly the same material as is
covered in Course I3 (Computer Organization) and Course A2
(Advanced Computer Organization) of "Curriculum '68".

Closely related to questions of computer organization
is computer architecture. At the Fourth SIGCSE Symposium,
Sloan [1691 reported on the current status of offerings in
this area. Using the results of a 1972 COSINE survey, he
identified two courses B2 (Computers and Programming) and I3
(Computer Organization) of "Curriculum '68" as roughly equiva-
lent to COSINE Courses Machine Structure and Machine Language
Programming, and Computer Organization respectively. In
the survey of 151 Electrical Engineering Departments it was
found that 55.4% offered the course equivalent to B2 with
35.1% having the course offered by another department, usually
computer science, and 68.3% offered the course I3 with
26.8% having the course offered by another department, again
usually computer science. Sloan went on to discuss ways in
which the courses differed from the given recommendations,

noting that they seemed to fall into five basic catagories:

[A

ﬁ!!?*

123

1) Introductory computer engineering courses with
a computer architecture flavor;
2) Software-oriented computer organization courses;
3) Hardware-oriented computer organization courses;
4) Case study courses
5) Topical seminars?
In this same volume, Thomas [174] discussed the objectives
and placement of courses in computer architecture in the
curriculum, while Clark [36] outlines the position and content
of this material in the doctoral program. Ellis and Wann [68]
at the Second SIGCSE Symposium described how specially designed
hardware macromodules can be used as a pedagogical aid in
teaching computer architecture.

Consideration has been given to the problems of preparation
of reliable software. Much of this work is now considered
under the title of structured programming, but has also
been referenced as software engineering.8 Parnas [145]
described how material of this type fits into a curriculum.

He includes a description of the general term:
The term "software engineering" is often used to
denote the building of commonly used systems programs

such as assemblers, compilers, and operating systems.
In the design of this course I have taken a much broader

7. M. E. Sloan, "Computer Architecture in U. S. and Canadian
Electrical Engineering Departments™, SIGCSE Bulletin 6, 1
(February 1974), 113,

8. A conference on Software Engineering and its impact on
education was held in Annapolis in 1969. No reports were
published on this conference. References in the area include
two reports of the NATO Science Committee, Software Engineering,
Peter Naur and Brian Randell (ed.), January 1969, and Sortware
Engineering Techniques, J. N. Buxton and B. Randell (ed.),
April 1970.

124

view. I take the view that programming is taught in

our basic courses as a solo activity. Such courses

teach programming techniques that are suitable for use

by a single person constructing a program which will

not be touched by other people. In contrast, I feel

that the essential characteristic of a software engineering
task is that many people will be involved with the product.
Either several people will cooperate in producing it,

or it will be used or modified by persons other than

the original writer. The course emphasizes procedures
which are optional and might be superfluous for solo
programming tasks, but are important if several people

are involved.9

The integration of business oriented courses into &
computer science curriculum is addressed in a paper by
Ein-Dor and Lyons [66]. After presenting some statistics
showing that a large number of the graduates of computer
science programs go into business oriented fields, the authors
propose four courses; Optimization Technique, Probability
Models and Queing Theory, Introduction to Simulation Languages
and Experiments, and System Simulation. The topics presented
in this paper are further addressed by the work of the ACM
Curriculum Committee on Computer Education for Management

which is referenced in Chapter 6.

Summary

The literature of computer science education contains
a number of references to specific courses, providing
expansion on the course materials given in the curriculum
studies.

The first course has received considerable study

9. D. L. Parnas, "A Course on Software Engineering Techniques™,
SIGCSE Bulletin 4, 1 (March 1972), 154.

125

focusing on questions of pedagogy, and the use of this course
és a service course. Recently attention has been given to
the introduction of the ideas of programming style and
structure in this course. Alternatives to the first course,
at least as a service course, have been proposed in computer
appreciation courses.

Discrete structures as proposed in "Curriculum '68"
has presented some problems in implementation, and as a
result has received attention in the literature. Issues
discussed have focused on the placement of the course in
the curriculum, methods of motivation and whether or not the
material needed requires more than one three semester hour
course for coverage.

Operating systems has received considerable study with
the COSINE Committee report redefining this course in terms
of developments and experience since the publication of

"Curriculum '68". Considerable effort has also been evident

in the development of special software systems for such courses.

Questions of the utility of the central university
computing system for use in computer science courses have
been raised, and special laboratory computers for the depart-
ments have been suggested. Related to this, the introduction
of minicomputers, to serve this laboratory need, and as an
object of study in themselves, has been proposed.

Consideration has been given to courses in computer

organization and computer architecture. These considerations

126

have focused on the position of such courses in the curriculum,
course content, and pedagogical aids.

Work has been evident in many other aspects of computer
science education with reported activities in the areas of
business oriented courses, software engineering, and theory

courses.

127

Chapter 6 - Subsequent Work

The publication of "Curriculum '68" did not complete
formal work on curriculum in computer science. C3S became
a standing committee of the Association for Computing
Machinery, and has been involved in several projects since
publication of "Curriculum '68". In addition another committee
of ACM has considered academic work in information systems,
while other groups have also been involved in curriculum in
computer science. Tt will be the purpose of this chapter to
look at these various efforts.

It was noted in Chapter 2 that C3S did not regard its
work as complete with the publication of "Curriculum '68"
and indeed planned to address such problems as programs for
smaller colleges, junior colleges and technical schools;
the relationship of computer science to cther disciplines;
program implementation problems; graduate programs; and that
a program of consultation and visitation would be sponsored
by the Committee. These objectives have all been met to
varying degrees with the exception of programs for junior
colleges and technical schools. It was generally found that
the problems of these institutions were quite different from
those of the four year schools and ACM has formed a separate
committee on computer science in junior colleges. Initial
work in this area is reported by Connelly [441].

Though not a direct activity of C38, several members
of the Committee, joined with other professionals in 1968

to form the ACM Special Interest Group on Computer Science

e

128
Education (SIGCSE):

The objectives and purposes which led to the
formation of SIGCSE can be stated in terms of its goal:
to encourage and assist in the development of effective
academic programs and courses in computer science.

In accordance with this stated goal, SIGCSE has
attempted to do the following:

1) Collect and disseminate information
concerning courses and programs offered at the
college level.

2) Organize and present technical panel
sessions at national meetings and when appropriate,
organize independent technical symposia.

3) Channel useful information developed by
SIGCSE members to the attention of other ACM
educational activities and committees.

4) Publish in the SIGCSE Bulletin such program
descriptions, course syllabi, problem sets, and
other items such as news and discussion items
which are of particular relevance to its members.
In addition, SIGCSE also plans to publish the
proceeding of its special technical symposium.l

Since its founding, the SIGCSE Bulletin has been a most

significant contribution to computer science education.
SIGCSE has held four well attended, high quality symposia
with the proceedings of each being major contributions to
the field; additional symposia are planned as an annual
event.,

Returning to the sponsored activities of C3S; within
"Curriculum '68" reference is made to future work involving
doctoral programs:

In 1966 Professor Thomas Hull was asked by ACM
to examine the question of doctoral programs in computer

science. After discussion with the members of this
Committee and with many other interested persons,

1. Robert M. Aiden, "Purpose, Goals, and Activities of SIGCSE",
Proceedings of the IFIP World Conference on Computer Education
1970 (Science Associates/International, New York, 1970),

p. LI/153.

129

Professor Hull decided to solicit a series of articles
on the research and teaching areas which might be involved
in doctoral programs. Each article is to be written

by an expert in the particular subject area, such

as programming languages, systems programming, computer
organization, numerical mathematics, automata theory,
large systems, and artificial dintelligence. Each
article is to attempt to consider all aspects of the
subject area which might be helpful to those developing
a graduate program, including as many of the following
topics as possible:

a) Definition of the subject area, possibly
in terms of an annotated bibliography.

b) Prerequisites for work in the area at the
doctoral level.

c) Outlines of appropriate graduate courses
in the area.

d) Examples of questions for qualifying
examinations in the area.

e) Indication of suitable thesis topics and
promising directions for research in the area.

f) The extent to which the subject area ought
to be required of all doctoral students in computer
science.

These articles are scheduled for publication in Communica-
tions of the ACM and it is hoped that they will stimulate
further articles on doctoral programs.

Four articles appeared in the series: "Automata, Formal
Languages, Abstract Switching, and Computability in a Ph. D.
Computer Science Program", Robert McNaughton [1361, "Computational
Linguistics in a Ph. D. Computer Science Program", Susumu
Kuno and Anthony G. Oettinger [1201, "The Role of Programming
in a Ph. D. Computer Science Program", Bruce W. Arden [7],
and "Information Science in a Ph. D. Computer Science Program',

G. Salton [159].
McNaughton briefly discusses the nature and definitions

of automata, formal languages, abstract switching and

2, Curriculum Committee on Computer Science, "Curriculum '68,
Recommendations for Academic Programs in Computer Science',
Communications of the ACM 11, 3 (March 1968), 165.

A

130
computability. Seven courses are suggested which are labeled
level 1 (junior-senior, first year graduate) and level 2
(seniors and all graduate students):
1) Introduction to Logic Design and Switching Theory
(level 1)
2) Introduction to Computability, Formal Languages
and Automata (level 1)
3) Theory of Computability (level 2)
4) Theory of Finite Automata (level 2)
S) Automata as Computational Models (level 2)
6) Computational Theory of Formal Languages (level 2)
7) Abstract Switching Theory (level 2)
The courses are referenced with a bibliography of 27 items.
Kuno and Oettinger first specify the scope of computational
linguistics:
Computational linguistics comprises (1) mathematical
characterizations of natural languages, (2) developments
of computer programs useful for linguistic research,
and (3) the application of linguistic techniques to
computer problems.3
A ten course program of study accompanied by an extensive
bibliography is presented to cover the material in this
field. The courses are listed as basic (freshman to junior
level), intermediate (junior to graduate level) and advanced
(advanced graduate level). It is noted that since the field.
itself is dinterdisciplinary, the courses overlap other branches
of computer science:.

1) Introduction to Computational Linguistics (basic)

2) Computers in Humanitic Research (basic)

3) Formal Theories of Grammar (intermediate)

4) Mathematical Models of Grammar and Syntactic Analysis
(intermediate)

3. Susumu Knuo and A. G. Oettinger, "Computational Linguistics
in a Ph. D. Computer Science Program" Communications of the
ACM 11, 12 (December 1968), 831.

131

5) Information Organization and Retrieval (intermediate)
6) Introduction to Transformational Grammar (intermediate)
7) Topics in Transformational Grammar (advanced)
8) Computational Semantics (advanced)
9) Application of Linguistic Techniques to Computer
Problems (advanced)
10) Advanced Course in Computational Philogy (advanced)

Arden describes three courses:
1) Applications Programming
2) Language Processing
3) System Design

These courses are to include the programming material involved

in an advanced degree program. An extensive bibliography

. on programming is included, as is a table of some one hundred

sixty five terms of which "subject matter suggested by these
words should be familiar to an expert in programming and
programming languages"'.4

Salton abstracts his work as follows:

The report contains recommendations on a sample
course curriculum in the general area of information
organization and information systems designed in a
Ph. D. Computer Science Program. The subject area is
first briefly described, followed by a listing of some
desirable graduate-level courses. Suitable bibliographies
are appended.>

The courses specified are:

1) Data Structures and Information Organization
2) Time-Sharing Computer Organization

3) Language Structure and Syntactic Analysis

4) Text Analysis and Automatic Classification
5) Information Retrieval System Design

6) Automatic Text Processing Systems

4, Bruce W. Arden, "The Role of Programming in a Ph. D. Computer
Science Program", Communications of the ACM 12, 1 (January 1969),
33. ‘

5. G. Salton, "Information Science in a Ph. D. Computer
Science Program”, Communications of the ACM 12, 2 (February
1969), 1il.

132

It should be noted that included with each of these
four reports was the following statement by P. Calingaert,

then education editor for the Communications of the ACM:

«+..The purpose of the series is to provide some guidelines
for what constitutes a "good" doctoral program. These
articles contain the opinions and recommendations of

4 experts in the subject areas. However, unlike "Curriculum
'68", they reflect neither the views of official ACM

nor the deliberations of a committee....6

€38, or individuals serving on the committee, have
been involved in programs for smaller colleges and universities,
consulting activities on curriculum and related matters,
and further work on the master's program. Much of the work
of discussing programs and course content problems, have

properly fallen on SIGCSE.
In 1970-71, a subcommittee of C3S chaired by O. W.
Rechard [154] addressed problems of smaller colleges:

A sub-committee of the ACM Curriculum Committee
has been established with the goal of studying the
problem of Computer Science instruction in the four-
year undergraduate colleges, and recommending a course
of action designed to alleviate the matriculation
problem described above. This proposal seeks funds for
the work of the sub-committee and for an experimental
summer program designed to introduce faculty members
from small colleges to the structure and content of
a group of selected undergraduate courses from schools

with strong degree programs.’
In its initial activities information was gathered on the

nature of programs in computer science in small colleges [701:

6. Peter Calingaert, "Editor's Note", Communications of
the ACM 12, 2 (February 1969), 111.

7. Ottis Rechard, "ACM Curriculum Committee Proposal'",
SIGCSE Bulletin 2, 2 (June-July 1970), 28.

Er——

133

The small college with an interest in computing
offers two or three courses in computer science.
Probably a FORTRAN course, then courses like Bl and
B2 of "Curriculum '68", and possibly a special topics
course. The courses are being taught by one man,
holding a masters degree in mathematics and probably
teaching a mathematics course also. He has, at best,
one course in computer science in his background, and
serves as a consultant to those on campus interested
in using the computer. He may also be associated with
the operation of the computer center of his college.

Within the next two years additional computer
science courses will be added to the curriculum,
bringing the total offering to close to 18 semester
hours.

There is a definite feeling that current graduate
programs are inadequate for the preparation of this
stand-alone computer specialist, and that a Doctor
of Arts program, or a special masters program with
a good deal of emphasis on application areas is needed .8
To address the problem of increasing the quality of

offering in computer science, the subcommittee, with support
from the National Science Foundation sponsored an institute
at Purdue University in the summer of 1971. In this program
four fundamental courses, discrete structures, programming
languages, operating systems, and data structures were
presented to fifty-three individuals from small colleges.

The courses were taught as normally done, except that they
were compressed into a four week per course time frame.

It was anticipated that the attendees would take the material

presented to them and offer it at their home institutions

thus forming a strong core for a computer science program.

8. Gerald L. Engel, "Computer Science Instruction in Small
Colleges - An Initial Report™, SIGCSE Bulletin 3, 2 (June
1971), 8.

134

Evaluations of the program indicated that indeed the material
was used as anticipated, and that the program was most
successful.

Difficulties in finding funding for further institute
programs, and the problems of reaching enough people with
such programs led to a study by Austiﬁg and Engel [22]
to recommend appropriate programs in computer science for
small schools:

This report gives recommendations for the content
implementation and operation of a program of computer
science courses specifically directed to small colleges.
In no way does this material represent a major program
in computer science. It does describe a program for
those schools with limited resources, but with an interest,
enthusiasm and desire for some course offerings in
computer science. Those institutions interested in
computer science and with resources necessary for a
major program in this field should refer to the existing
reports of ACM's Committee on Curriculum in Computer
Science (C3S), and other curriculum studies. Institutions
which desire to complement computer science offerings
with a set of courses in computational mathematics
should consider the report of the Committee on the
Undergraduate Program in Mathematics.?

The report emphasizes a program that would be within
the reach of institutions with limited resources, includes
an extensive library list, comments on staff and equipment
requirements, and considers how the courses can be designed
to meet a variety of objectives for an institution which
cannot afford both a series for computer science students,

and a series for departments using computer science:

9. Richard H. Austing and Gerald L. Engel, "A Computer
Science Course Program for Small Colleges™, Communications
of the ACM 16, 3 (March 1973), 139.

135

Four courses are described and suggestions are
made for additional study and courses for students
interested in further work. No names have been given
to the four courses, but they correspond roughly to
the areas of algorithms and programming (Course 1),
application of computers and their impact on society
(Course 2), machine and systems organization (Course 3),
and file and data organization (Course 4). Though these
courses in a real sense represent a coherent program,
they are structured so as to allow a student with limited
objectives and limited time to pick and choose those
parts most relevant to his needs.l0

€33 has also continued to be concerned with graduate

programs in Computer Science, and a program of study leading

. to a master's degree in computer science was reported by

Melkanoff [137] at the Third SIGCSE Symposium in 1973, and

again by Melkanoff, Barnes and Engel [138] at the 1973

National Computer Conference. This program modifies the

master's recommendations of "Curriculum '68", based on experience:

The proposed M. S. program is based on the following
assumptions regarding the destination of its graduates:
Some 10 to 15% of the graduates will work in
areas related to the scientific aspects of Computer
Science.
Some 35 to 40% of the graduates will work
in the area of computer system design (hardware
and software).
Some 35 to 40% of the graduates will work
in those areas of systems design where the computer’
plays a key part.

Some 10 to 15% of the graduates will work in

areas unrelated to Computer Science or computers. 1

The program suggested requires nine three semester hour
courses, at least five of which are graduate. A thesis is

optional. A high level of competence in at least one

10. TIbid., 139-140.

11. M. A. Melkanoff, "An M. S. Program in Computer Science",
SIGCSE Bulletin 5, 1 (February 1973), 77.

136

programming language is required, as well as'"Proficiency

in a fundamental core of knowledge common to all subfields

of Computer Science. This should cover the material taught

in 4 to 6 courses (upper division or graduate) and include
formal linguistics, programming languages, computer architecture,
and systems programming."l2 A major should be completed in

one of the established field of computer science which include
theory, programming languages, systems, architecture and

design, and artificial intelligence, the major selected in

some sense designed to meet the students ultimate objectives.

In addition it was strongly recommended that a minor be

taken through a coherent sequence of courses in some application
area.

It was also observed that C3S, upon completion of work
with "Curriculum '68", planned to develop a program of
visitation and consultation. In 1968-69 this was handled
through the ACM Visiting Scientist Program which gave way
in the latter part of 1969 to the ACM College Consulting
Service, funded by the National Science Foundation and under
the direction of W. Viavant. In the period 1969-1973 nearly
one hundred institutions were visited by computer professionals
to offer various comments and suggestions on computer science
curriculum, computer uses in education and facilities. The

materials that encompassed the reports on these visits has

17, 1bid., 78.

137

been collected and a final report on this program will be
published soon.

The activities described above indicate the formal and
published material of the C3S subsequent to the publication
of "Curriculum '68". In addition to this work, the committee
has met regularly to discuss current issues in computer
science education, and to supply input for additional work
through the ACM Education Board. Included in these activities
is a study leading to recommendations for certification of
computer science teachers for secondary schools which will
be carried out by members of C3S and the ACM Secondary School
Committee, under the direction of the ACM Education Board.

C3S has maintained an interest in the areas of service
courses with G. Stokes chairing a subcommittee studying the
needs in this area. It is anticipated that once these are
collected, further course descriptions to meet the service
course need, based on experience, can be prepared.

The area of Computer Appreciation courses, or Computers
and Society courses has become quite active in the past few
years. R. Austing is chairman of a subcommittee to review
this area and prepare necessary recommendations.

Continuing discussions have gone on regarding the nature
of work needed on "Curriculum '68". The following comments
represent a cross section of comments made at the various

sessions:

138

"Computer and society courses are appearing with
great frequency. Something is needed in the way of
a general interest type course."

"Curriculum '68" is closely tied to mathematics.
Is this necessary?"

"Topics like telecommunications and systems analysis
are not mentioned."

"What effect does high school background in
computing have on the first course?"

"Mt the junior-senior level, business-oriented
courses are missing these should cover information
structures, file and communication systems, systems
analysis, and systems simulatdion.”

"Little thought is given to operational aspects
of computing."

"More is needed of the relationship of electrical
engineering courses to computer science."

"Course bibliographies are much in need of updating."

"Several courses need reorganization and several
courses could be expanded and/or split into two courses."

"Service courses need to be recommended."

"'Curriculum '68' came under early and continuing
heavy criticism from within and without academia for
its almost total neglect of the pragmatics of the job
market."

"New curriculum should reflect the advances in
Computer Science and include materials on topics that
have come of age since "Curriculum '68" such as semantics,
structured programming, theory of programming languages
and mini-computers."

"A curricula report documenting undergraduate courses
and undergraduate degree programs in Computer Science
is needed."”

"Any new version of "Curriculum '68" should stress
more than before, applications of Computer Science,™l3

13.

From the minutes of C3S meetings.

139

Though not themselves being direct €38 activities, two
additional meetings deserve mention. The 1970 ACM National
Meeting featured some ten sessions on education including
various aspects of computer uses in education and the applica-
tion of computers to training. Also included were four
sessions on Computer Science Education:

General Computer Education

Moderator - William F. Atchison, University of
Maryland

Participants
Glen Bonham, Ontario Department of Education
Robert Korfhage, Southern Methodist University
Werner Rheinboldt, University of Maryland
William Viavant, University of Utah

Undergraduate Education

Moderator - Preston C. Hammer, Pennsylvania State
University

Participants
Samuel D. Conte, Purdue University
D. D. Cowan, University of Waterloo
Gerald Engel, Hampden-Sydney College
Thomas Schoen, University of Dayton

Graduate Education
Moderator - George E. Forsythe, Stanford University
Participants
Thomas Bredt, Stanford University
Saul Gorn, University of Pennsylvania
Robert Spinrad, Xerox Data Systems
Peter Wegner, Brown University

Organizing for Computer Science Education
Moderator - Earl J. Schweppe, University of Kansas
Participants
William F. Atchison, University of Maryland
Aaron Finerman, SUNY, Stonybrook
George E. Forsythe, Stanford University
Preston C. Hammer, Pennsylvania State University

While not presenting much new, these panels did nicely summarize
the problems facing various aspects of computer science

education. What is significant is that, unlike most panel

140
sessions, edited transcripts of the sessions appear in the
Proceedings of the Conference [19, 101, 81, 1641].

The other activity was a meeting of small college educators
at Wheaton College in 1972 to discuss problems of computer
science education in small schools. This work is reported
by La France and Roth [121]. At this session the existing
studies on curriculum were taken, and, based on them, |
recommendations were made regarding appropriate material
for colleges of the type represented (church related liberal
arts colleges with enrollments of up to 1500 students).
Effectively the Workshop recommended that a small school
should seriously consider offering the equivalent of the
courses outlined in the Austing and Engel report, and in
addition a course in systems analysis. As demand warrents
courses in the areas of language theory, theory of computing
and simulation could be added, and appropriate course outlines
are included. It was recommended that the mathematics
departments of the colleges should also be strongly encouraged
to offer courses in discrete structures, numerical mathematics,
and combinatorics.

Curriculum development in areas related to computer
science also continued in the period subsequent to the
publication of "Curriculum '68". ACM was involved not only
in the activities of C3S, but also in the Curriculum Committee
on Computer Education for Management (C3EM) chaired by

Daniel Teichroew. C3EM has prepared and published curriculum

141

recommendations for both undergraduate and graduate programs

in information systems, these programs are described in

September 1971 [1731, May 1972 [15], and December 1973 L[55]

Communications of the ACM, the Proceedings of the 1972 ACM

National Conference [16, 541, and the Third SIGCSE Technical

Symposium [171].

The graduate level recommendations were prepared by

a subcommittee chaired by R. L. Ashenhurst:

This report presents recommendations for a graduate
professional program in information systems development
at the Master's level. The program is intended for
the education of individuals who will develop complex
information systems. Concomitantly, recommendations
are given for information system specialization within
existing Master's degree programs.

As documented in the position paper there is a
widely felt need for individuals who can bring to bear
the relevant computer technology on the information
requirements of particular organizations. To meet
this need requires the introduction of new professional
programs and the modification of existing ones in
institutions of higher learning.

A body of knowledge exists for both organizational
functions and information technology, but this knowledge
is currently offered in diverse areas of graduate
education. The curriculum in information system develop-
ment presented here represents an attempt to integrate
this knowledge and add new definition and perspective
to the field.l4

Accompanied by detailed course descriptions and extensive

bibliographies, thirteen courses are presented, divided into

four basic groups:

14,

R. Ashenhurst (ed.), "Curricula Recommendations for

Graduate Professional Programs in Information Systems",
Communications of the ACM 15, 5 (May 1972), 365.

142

Course Group A: Analysis of Organizational Systems
Al. Introduction to Systems Concepts
A2, Organizational Functions
A3, Information Systems for Operations and Management
A4, Social Implications of Information Systems

Course Group B: Background for Systems Development
Bl. Operations Analysis and Modeling
B2. Human and Organizational Behavior

Course Group C: Computer and Information Technology
Cl. Information Structures
C2, Computer Systems
C3. File and Communication Systems
C4., Software Design

Course Group D: Development of Information Systems
D1. Information Analysis
D2, System Design
D3. System Development Projectsd>

In many ways the program described was intended to

meet objections raised to "Curriculum '68" regarding the

relevance of the material to the real applications of computers.

The primary interaction of this program and that of a computer

science department is within the Group C courses. Ashenhurst

described some of the problems involved in interaction and

differences between programs in computer science and information

systems:

Computer science education today is a mixture of
the "theoretical and "applied". The theoretical,
or basic, aspects are not directly relevant to education
for work in information systems, although, contrary
to some belief, the kind of precise thinking engendered
is by no means an unwelcome attribute in an information
systems developer. In fact, it dis in the applied,
or pragmatic aspects of computer science that the habits
of thought instilled in the student may be most incon-
sistent with the needs of information systems development.

15.

Ibid., 373.

143

This paradox is brought about because of the "do it
yourself" attitude toward programming often inculcated
by computer science programs. The student uses the
computer as a "personal problem solver”, as a tool which
he or she employs to obtain results in a given area

of interest. The difficulties which are generally
associated with communicating these results in their
essence to others, let alone making it possible for
others to use the programs to obtain similar ones,

are too common to require elaboration here.

The main area in which some of the information
systems philosophy has penetrated computer science
is that of the development of computer systems, in
operating systems courses. This is not surprising,
because a computer system is in fact a special type
of information system, one whose "subject matter"
is the computer hardware system and its associated
pool of software resources, programs and data sets.
Most of the computer science work on applicational
techniques, however, takes little cognizance of the
information systems point of view.l6

In December 1973 recommendations for undergraduate

programs in information systems were published [55]. This

work was under the direction of J. Daniel Couger. The under-

graduate program is described in terms of two options;

an organizational option stressing the use of computers,

and technological option for preparation of an individual

for employment in information processing.

Eleven courses are specified, again with detailed

course descriptions and bibliographies:

UBl1 Operations Analysis and Modeling
UB2 Human and Organizational Behavior
UCl Information Structures

UC2 Computer Systems

UC3 File and Communication Systems
UC4 Software Design

16.

Robert L. Ashenhurst, "Implications for Computer Science

Departments of the ACM Information Systems Curriclum", SIGCSE
Bulletin 5, 1 (February 1973), 3.

H

144

UC8 Programming Structures and Techniques

UcC9 Computerware

UA8 Systems Concepts and Implications

UD8 Information Systems Analysis

UD9 System Design and Implementationl?
The first six of these courses are undergraduate versions
of courses described in the Master's program. The other
courses are combinations of material from the master's program.
Course UC8 is of some special interest in that it represents
an approach at a second course in programming.

In addition to the curriculum activities of ACM in the
post "Curriculum '68" era, other organizations were active
in curriculum planning related to computing and computer
science. The Computer Sciences in Electrical Engineering
(COSINE) Committee, of the Commission on Engineering Education,
in addition to work reported in Chapter 5, produced a number

of other reports involving computer science to varying

degrees; Some Specifications for a Computer-Oriented First

Course in Electrical Engineering [47], Some Specifications

for an Undergraduate Course in Digital Subsystems [49],

Impact of Computers on Electrical Engineering Education -

A View from Industry [50], and Digital Systems Laboratory

Courses and Laboratory Developments [51].

The Committee on the Undergraduate Program in Mathematics

(CUPM) upgraded their 1964 recommendations for work in computing

17. J. Daniel Couger, "Curricula Recommendations for
Undergraduate Programs in Information Systems", Communications
of the ACM 16, 12 (December 1973), 732.

b

into

145

a program in computational mathematics appearing in

May 1971 [43]. The report comments on the need for this

work:

More recently, three trends have become noticeable.
First, there appears to have developed a strong tendency
on the part of computer science programs to minimize
prerequisite requirements in traditional mathematics,
particularly analysis, and also to underemphasize or
even to disregard most areas of scientific computing.
Second, many disciplines, including in particular the
biological, social, and behavioral sciences, have
become increasingly mathematical, giving rise to a
need in these fields for expanded education in mathe-
matics and in scientific computing. Finally the computer
has begun to have a direct effect upon mathematics
courses themselves. New courses particularly in
computer-oriented applied mathematics, are being introduced
into many mathematics curriculum, and traditional courses
are being modified and taught with a computer orientation.
As an example of the latter we cite only the teaching
of calculus. Approximately 100 schools now offer a
course in calculus using the text, Calculus, A Computer
Oriented Presentation, published by-the -Centé® for Research
in College Instruction in Science and Mathematics....

These three trends all indicate a need for the
mathematics community to accept a responsibility for
mathematical or scientific computing, and to broaden
educational opportunities toward a more encompassing
"mathematical science" in which students may explore
the areas of overlap between pure and computational
mathematics, as well as computer science. There is
thus a need for innovative undergraduate programs which
provide for a wide range of options, different oppor-
tunities for graduate studies and a variety of future
careers.l8

The differentiation between the program outlined in this

report and a computer science program is clearly stated:

The present report is the result of such a re-
appraisal by the CUPM Panel on Computing. From the

18.

Committee on the Undergraduate Program in Mathematics

(CuPM), Recommendations for an Undergraduate Program in
Computational Mathematics (CUPM, Berkeley, California, 1971),

PP. 2-3. . -

i

146

outset it was evident that the aims of this report
should be different from those of the earlier work,
since its intended audience is different. The present
report does not address itself to the training of
computer scientists. Instead, its concern is for the
education of mathematicians who will know how to use
and apply computers. Programs in computational mathe-
matics necessarily have different objectives than do
programs in computer science,l9

The report goes on to recommend that the following courses
would be appropriate to add to a program in mathematics:
Computer Science Courses
Cl Introduction to Computing
C2 Computer Organization and Programming
C3 Programming Languages and Data Structures
Computational Mathematics Courses
CM1l Computational Models and Problem Solving
CM2 Introduction to Numerical Computation
CM3 Combinatorial Computing
CM4 Differential Equations and Numerical Methods
A strong relationship is seen between these courses and
those of "Curriculum '68"™: Cl to Bl of C'68; C2 to B2
of C'68; C3 to a combination of Il and I2 of C'68; CM2
to B4 of C'68; CM3 to B3 of C'68; and CM4 to I8 of C'68.
The primary differences seem to be in the level of offerings.
Course CM1l does not have a direct parallel in "Curriculum
'68" and presents something of a second course in programming
with emphasis in computer applications.
As was mentioned above, C3S has had an interest in
programs for secondary schools and indeed is beginning

work jointly with the ACM Committee on Secondary Schools

to draw up certification recommendations.

19. 1bid., p. 5.

—
]

147

Two other groups have published recommendations involving
computer science education as it applies to the pre-college
level., The Committee on Computer Education of the Conference
Board of the Mathematical Sciences published in April 1972
"Recommendations Regarding Computers in High School Education"
[38]. This report presented a series of seven recommendations
regarding what computer education should be offered in the
schools and how it should be achieved:

Al. We recommend the preparation of a junior
high school course in "computer literacy" designed
to provide students with enough information about
the nature of a computer so that they can understand
the roles which computers play in our society.

AR2. We recommend that the process of preparing
the text materials for the above course be such as
to provide wide and rapid dissemination of information
about the availability and feasibility of the course.

B. We recommend that text materials for a number
of other courses be prepared, including an introduction
to computing, as a followup to the computer literacy
course, some modules which integrate computing into
high school mathematics courses, and other modules
which utilize computers in simulating the behavior of
physical or social phenomena and which enable the use
of computers in the study of courses outside mathematics.

C. We recommend the development of special programs
for high school students showing unusual aptitude and
promise in computer science.

D. We recommend a major effort aimed at making
vocational computer training more generally available
and at the same time improving the quality of such
training.

E. We recommend that the National Science Foundation
provide financial support for the development of a
variety of programs for the training of teachers and
of teachers of teachers of high school courses involving
computers.

148
F. We recommend the establishmenf of a clearinghouse
for information about high school computer education.<0
Activity in the secondary school area has also been
conducted by the Working Group on Secondary School Education
(WG 3.1) of the International Federation of Information
Processing (IFIP), Technical Committee for Education (IC-3).
This group published an outline guide for teachers in Rugust
1970 [110], revised September 1971 [111], M"intended for those

people who are concerned with the planning of computer courses

- for the training of teachers".2l various aspects of computing

are introduced in such a way as to lend themselves to course
development for teacher training courses, as well as ideas
for classroom development. It is planned that this work
will be expanded into a series on computing in secondary
schools.

Additional material involving curriculum planning has
been undertaken and reported by individuals not directly
involved in the activities of the curriculum planning committees.
In virtually all cases the ideas expressed have been incorporated
in the deliberations of the various committees and subcommittees,
and as such will not be directly considered here. The reader

is referred to several papers appearing in the bibliography,

20, Committee on Computer Education, Recommendations Regarding
Computers in High School Education (Conference Board or the
Mathematical Sciences, Washington, D. C., April 1972), pp. 1-2.

21, IFIP Technical Committee for Education, Computer Education
in Secondary Schools; An Outline Guide (IFIP, Amsterdam, The
Netherlands, 1971), p. 4.

A

149

and especially those of S. Amarel [4] and P. Wegner [182, 183,

1841.

Summarz

Subsequent to the publication of "Curriculum '68",
considerable work has gone on relating to computer science
education. A significant development in this period was
the formation of the ACM Special Interest Group on Computer
Science Education (SIGCSE), which provides a continuing
organization for the presentation and exchange of ideas
in the field.

€3S has continued its activities following the publication
of the report. Under the sponsorship of this Committee, a
series on doctoral programs was published, a summer institute
program for smaller schools was conducted, course recommendad-
tions for smaller schools were prepared, and guidelines
for masters programs were prepared. Additionally, C3S
has regularly met to discuss current issues in computer
science education, and presently has subcommittees preparing .
materials relating to service courses, and courses in computer
appreciation.

Additional curriculum work has been conducted within
ACM by the Curriculum Committee on Computer Education for
Management (C3EM). This Committee has prepared guidelines
for both graduate and undergraduate programs in information

systems which integrate materials associated with computer

150

science with materials associated with business.
Curriculum study and development has also gone on outside
ACM with the COSINE Committee continuing its study and
review of computer science in electrical engineering and
CUPM expanding its earlier work into a program in computational

mathematics.

151

Chapter 7 ~ Impact of "Curriculum '68"

In chapters 1 to 3 "Curriculum '68" was discussed as
were the immediate critiques of the report, work preceding
the publication of the recommendations, and related work
to "Curriculum '68". In chapters 4 to 6 implementation of
the recommendations were considered, as were discussion
of work on specific courses and work on ¢3S and other groups
involved in computer science curriculum. In this chapter
these materials will be drawn together to determine the
strengths and weaknesses of "Curriculum '68", and to see
how the subsequent reports and recommendations serve to
correct the weaknesses., The areas needing additional attention
will then be determined.

The data from the curriculum surveys of Chapter 4 indicate
that the courses of "Curriculum '68" are offered with signifi-
cant frequency at educational institutions in the United
States. The data also indicate, however, that certain courses
require additional consideration. These include B3, Discrete
Structures, B4, Numerical Calculus, I6, Switching Theory,

I7, Sequential Machines, A4, System Simulation, A3, Analog

and Hybrid Computing, A6, Computer Graphics, and A8, Large

Scale Information Processing Systems. It is interesting

to note that courses B3, I6, and I7 represent most of the
theoretical component in the undergraduate program of "Curriculum

'68", indicating that experience dictates that this entire

o

152

component needs further evaluation. Course B4 appears

to need study regarding its placement in the curriculum

and the relationship to the other courses in numerical
mathematics. Course B4 appears to need additional focus

as to content, direction and placement. Courses A3, A6,

and A8 seem to suffer from a lack of equipment or personnel
in most cases, but appear to raise the question of their
necessity in detailed specification in a limited curriculum.
Course Il, though offered with more frequency than the others,
is offered with the lowest frequency of the core courses

of "Curriculum '68". Considering the critical position of
this course in "Curriculum '68", it too requires additional
study.

It must also be noted, that in considering the courses
of "Curriculum '68", the date of publication of the report,
and the subsequent development of additional instructional
materials, that there is a need, in the case of all the
coﬁrses, to evaluate and further develop the referencing
materials.

Atchison observed at the €3S meeting at the 1971 Fjcclt
that C38 had, in the construction of "Curriculum '68" side-
stepped the issue of service courses in favor of what was
then the more pressing issue of definition of the field of

computer science. From the data of these studies of curriculum

1. Minutes of C3S Meeting, 1971 FJCC.

153

implementation it is clear that service courses represent

a major undertaking of the departments, and hence consideration
of this area must be made in a review of "Curriculum '68".
Areas that need attention include the appropriateness of

a course like Bl as a service course, the nature and content

of computer appreciation or computer and society courses,

the role of the special application courses, the role of

the special language courses, and course work above a one
course offering in the service area.

Experience shows that work in the data processing area
is offered and even required in a considerable number of
programs, yet it was not considered in "Curriculum '68".
This, then, is an area which needs attention.

Experience also shows that a large number of courses
in computer topics not considered in "Curriculum '68" are
being taught. It is interesting to note that many of these
courses are offered with greater frequency than some of
the courses of "Curriculum '68", and as such must be evaluated
in considerations of revisions and updatings of "Curriculum
68", These include courses like Computer Design, Systems
Design, Data Base Management, File Organization, Operations
Research, Data Communications, and Process Control.

The consistency with which the graduates report the
importance of the practical, programming oriented courses
is significant., In many ways this repeats the thoughts

expressed in discussions of industry reactions to computer

154

science programs such as the remarks of Hamming considered

in Chapter 2, and the panel sessions at the Second SIGCSE
Symposium and the Fourth SIGCSE Symposium. These are summarized
by Dodd [64] in his position statement from the latter:

Today, undergraduate Computer Science Education
teaches mechanics without teaching problem solving.
Typical curricula include courses in assembler language,
compiler theory, list processing, and automata theory.
Every MS degree holder, and most BS degree holders,
know Polish notation, and have written parts of compilers.
However, few of them have ever learned to write a program
that can be easily enhanced or respond to changes as
new management (instructor) requirements are set forth.
Even fewer can read a program and describe what it does
or debug a system consisting of ten or more modules.Z2

When one considers that Walker's study indicates that prepara-
tion of systems analysts was the highest ranked objective

of undergraduate programs and second highest ranked objective
for a master's program, while preparation of computer software
systems designers was the highest ranked objective of the
master's programs, these results are even more significant.

The evaluation of the graduates, especially when combined
with the comments from industry, indicates a weakness in
"Curriculum '68" and programs related to it in the practical .
programming oriented areas. These areas must be carefully
considered in a revision of "Curriculum '68".

Chapter 5 looks at specific course development as reported

in the literature since the publication of "Curriculum '68".

The fact that such material was published points to the

2. George Dodd, "Position Statement on Industry Reaction to
Computer Science Education", SIGCSE Bulletin 6, 1 (February
1974), 79.. :

155

fact that it was to share certain ideas in curriculum not
widely known, and hence serves to overcome some of the
shortcomings of "Curriculum '68". In the process of evaluation
of "Curriculum '68" working toward revision, this work must

be carefully considered as representing potentially significant
contributions to the revision.

The first course is extensively discussed from the
standpoint of the computer science curriculum, as well as
from that of a service course, and that of a combined course
to meet the objectives of both groups. The ideas of programming
structure and style are also brought into these discussions.

Work in the areas of computers and society and computer
appreciation courses is considered. The discrete structures
course receives considerable attention as might be expected
by a course having a key role in the curriculum recommendations
while showing far from universal acceptance in curricula
implementation. Additionally a new course in computational
analysis and further discussion of additional theory courses
are considered.

Operating systems or systems programming has considerable
coverage including the extensive report of the COSINE
Committee. Related to this is the discussion of pedagogical
software and of special computing facilities teaching computer
science.

Additional courses considered include computer organization,

computer architecture software engineering and business

156

related courses.

Chapter 6 considered subsequent work of ¢33 and other
groups involved in curriculum planning. In some cases this
demonstrates areas where C3S is addressing or has addressed
some of the shortcomings of "Curriculum 68", in others
it represents studies that must be evaluated and potential
solutions to such shortcomings.

Aspects of the doctoral program have been addressed

in the Communications gﬁ the ACM. A subcommittee of C38

has looked at the special problems of computer science at
small colleges and recommended a sequence of four courses
to serve as a core for students planning to go on in computing,
and also to meet various service needs. A subcommittee is
studying the area of service courses and another computers
and society courses. The master's program has been considered
further and an initial set of recommendations has been
presented.

The ACM Curriculum Committee on Computer Education for
Management has prepared recommendations for both graduate
and undergraduate programs in information systems designed
to meet and overcome some of the objections that computer
science programs are not responding to the need of business.
Armstrong [10] summarizes the objectives of this committee's
work in the Proceedings of the Second SIGCSE Symposium:

As a member of the ACM Curriculum Committee on
Computer Science Education for Management, I have been

involved in the development of a curriculum for a profession-
al Master's degree in Information Systems. It is

157

the opinion of this committee that their curriculum
proposal represents a viable approach to the current
and projected needs of organizations - within the
current university framework. Computer Science Departments
will be called upon to support certain aspects of
this curriculum - as will the business schools, and
the operations research people. The desire is for an
integrated approach - with the additional infusion
of the experience of industry practitioners. A challenge
exists in integrating experience into such a program
in a meaningful fashion without violating the aims
of the university.3
Additionally the COSINE Committee of the Commission
on Engineering Education has been active in preparation of
various aspects of computer science and how it relates to
electrical engineering, while the Committee on the Undergraduate
Program in Mathematics has prepared recommendations for
appropriate computer science work in a mathematics program.
Work has been undertaken in the secondary school area
by the International Federation of Information Processing
and by the Conference Board of the Mathematical Sciences.
ACM has recently formed a group composed from members of C3S
and the ACM Committee on Secondary School Programs to investigate
and recommend guidelines for the training of secondary school

teachers.

Summary and conclusions

"Curriculum '68" has proved an important source in the
planning and development of academic programs in computer

science. One only need look at the recent listings of current

3, Russell M. Armstrong, "Industry's Need and Computer Science
Departments'", SIGCSE Bulletin 4, 1 (March 1972), 73.

" .

158

offerings to see this influence, and this cannot measure
all of the impact which must also include the various cases
where materials have been introduced after a study of the
report indicated a different approach was necessary.

Like all documents, however, "Curriculum '68" has its
shortcomings and is in need of revision, modification, and
updating, though the evidence of experience indicates that
a complete new set of recommendations is probably not necessary.
On the other hand, some items such as updating of bibliographies
is obviously necessary.

Other areas, including service courses, the relationship
to business data processing, teacher training programs, and
courses reflecting advances in computer technology must
be considered. In considering these areas, clearly certain
areas and topics of interest and importance at the time
of the preparation of the "Curriculum '68" must be reconsidered.

Pedagogical questions such as the role of the ideas
expressed in the recent developments in programming style
and structure, developments in the areas of pedagogical
languages and their implications on equipment recuirements
and course development, and the availability of wminicomputers
and their implication on the curriculum must be evaluated.

Specific courses recommended in the report which have
not been widely accepted, or which have not achieved the
key position prescribed in the prerequisite structure of

"Curriculum '68" must be reevaluated.

>

159

At the meeting of C3S at the 1974 National Computer
Conference it was determined that all efforts should be made
to make "Curriculum '68" more flexible and timely. To this
end commentaries are to be prepared on the business area,
the operating systems area, the hardware area, the service
area, the information retrieval area, the theoretical area,
the computer engineering area, and the relationship of two
year programs to the university programs.

Computer Science Education since "Curriculum '68" has
a rich if not exhaustive literature, covering approaches
and activities in many areas that represent omissions and
shortcomings of "Curriculum '68". In the development of these
commentaries and the revision of the report, it is essential
that the experience reflected in this literature be fully
utilized.

Curriculum recommendations serve a variety of needs
among which are guidelines to schools developing programs,
and models by which information on courses and programs can
be explained and measured. Granted the youth of the computef
field, and that there is a continued need for computer science
graduates at least at the bachelor's and master's level4
such recommendations are important. Work on an update and
revision of "Curriculum '68" is necessary and will be & most

welcome addition to the literature of Computer Science Education.

4, John W. Hamblen, Computer Manpower - Supply and Demand -
by States, Information Systems Consultants, R. R. 1 box 256A,
St. James, Missouri, 1973.

160

Bibliography

1. Adams, J. M. and D. H., Haden. "Introductory Service
Courses in the Computer Science Curriculum'. SIGCSE Bulletin
4, 1 (March 1972), 49-52.

2. Adams, J. Mack, William H. Inmon and Jim Shirley. "PL/T
in the Computer Science Curriculum". SIGCSE Bulletin 4, 1
(March 1972), 116-126.

3. Aiken, Robert M.. '"Purpose, Goals, and Activities of
SIGCSE". Proceedings of the World Conference on Computer
Education 1970. Science Associates/lnternational, New York,

1970, IL/153-I1/156.

4, BAmarel, Saul. "Computer Science: A Conceptual Framework

- for Curriculum Planning". Communications of the ACM 14, 6

(June 1971), 391-401.

5. BAmarel, Saul. "A Set of Goals and Approaches for Education

in Computer Science". Proceedings of the AFIPS 1972 SJCC.
AFIPS Press, Montvale, New Jersey, 1972, 841-846.

6. Arden, Bruce W.. "On Introducing Digital Computing".
Communications of the ACM 7, 4 (April 1964), 212-214.

7. Arden, Bruce W.. "The Role of Programming in a Ph. D.
Computer Science Program". Communications of the ACM 12, 1
(January 1969), 31-37.

8. Arden, Bruce W., Larry K. Flanigan and Bernard A. Galler.
"An Advanced System Programming Course". Proceedings of

the IFIP Congress 71. North-Holland Publishing, Amsterdam,
The Netherlands, 1972, 1510-1514.

9. Aprmstrong, Russell M. and Emmett K. Platt. "Business

and The University Computer Science Department: The Left-
Hand Side of a Dialogue™. SIGCSE Bulletin 2, 3 (November

1970), 6-8.

10. Armstrong, Russell M.,. "Industry's Need and Computer
Science Departments". SIGCSE Bulletin 4, 1 (March 1972), 73.

11. Armstrong, Russell M.. "Continuing Education in
Information System Development™. Proceedings of the ACM
1972 Annual Conference. ACM, New York, 1972, 130-133,

12. Armstrong, Russell M.. "Industry's Need and Computer
Science Departments™. SIGCSE Bulletin 4, 3 (October 1972),
41-43,

161

13. Arsac, Jacque J.. "Informatics and Computer Education".
Proceedlngs of the World Conference on Computer Education 1970.
Science Associates/International, New York, 1970, 1/69-1/72.

14. Ashenhurst, Robert L.. "Balance in Computer Science
Education™. Proceedlngs of the World Conference on Computer
Education 1970. Science Assoclates/Internatlonal New York,

1970, II/157-11/160.

15. Ashenhurst, R. (ed.). "Curricula Recommendations for
Graduate Professional Programs in Information Systems™.
Communications of the ACM 15, 5 (May 1972), 363-398.

16. Ashenhurst, Robert L.. "Curriculum Recommendations
for a Master's Program in Information Systems Development™.
Proceedings of the ACM 1972 Annual Conference. ACM, New
York, 1972, 134-137.

17. Ashenhurst, Robert L.. "Implications for Computer
Science Departments of the ACM Information Systems Curriculum”.
SIGCSE Bulletin 5, 1 (February 1973), 2-5.

18. Atchison, William F. and John W. Hamblen. "Status
of Computer Science Curricula in Colleges and Universities™.
Communications of the ACM 7, 4 (April 1964), 225-227.

19. Atchison, William F. (Chairman). "General Computer
Education: Edited Session from ACM 70". din R. W. Bemer (ed.),
Computers and Crisis. ACM, New York, 1971, 96-101l1.

20. Atchison, William F. "Computer Science Preparation
for Secondary School Teachers™., SIGCSE Bulletin 5, 1
(February 1973), 45-47.

21, Austing, Richard H. "A Lower Division Course Sequence
in Computer Science'. Proceedings of the World Conference
on Computer Education 1970. Science e Associates/International,
New York, 1970, 1L/167-1L/170.

22. Austing, Richard H. and Gerald L. Engel. "A Computer
Science Course Program for Small Colleges™". Communications
of the ACM 16, 3 (March 1973), 139-147.

23. Barnes, Bruce H. and Malcolm H. Gotterer. "Undergraduate
Education in Computer Science: Some Fundamental Problems
and their Solution”. Proceedings of the World Conference
on Computer Education 1970. Science Associates/International,

New York, 1970, I11/171-I1/174.

24. Barnes, Bruce H. and Malcolm H. Gotterer. "Attributes
of Computer Professionals". din Theodore Willoughby (ed.),

162

Proceedings of the Ninth Annual Computer Personnel Research
Conference, ACM, 1971, 167-176.

25. Bateman, Barry L. and Gerald N. Pitts. "Computer
Science as a Foreign Language Substitute". SIGCSE Bulletin
5, 1 (February 1973), 132-133.

26. Bauer, Michael A.. "A Student-Designed Undergraduate
Program"., SIGCSE Bulletin 2, 3 (November 1970), 13-17.

27. Beidler, John A.. "A Machine Independent Course in
Processor Organization and Assembler Language Programming".
SIGCSE Bulletin 5, 1 (February 1973), 149-152.

28. Belzer, Jack. "Education in Information Science.
Journal of the American Society for Information Science
21, 4 (July-August 1970), 269-273.

29. Benson, Robert. "The Computer Science/Industry Gap:
The Educational Issues". SIGCSE Bulletin 4, 3 (October
1972), 38-41.

30. Blount, S. E. and L., Fein. "The Practical Aspect of
Computer Science--Discussion". Communications of the ACM
16, 1 (January 1973), 45-46.

31. Brady, Allen H.. "The Introductory and Service Courses
in Computing: Some Experiences and a Critical Assessment".
SIGCSE Bulletin 2, 2 (June-July 1970), 31-37.

32, Brillinger, P. C. and D. D. Cowan. "A Complete Package
for Introducing Computer Science". SIGCSE Bulletin 2, 3
(November 1970), 118-126.

33. Brown, D. C.. "The Project, and the Future of Computing
Science Courses". The Computer Journal 16, 4 (November 1973),.
380-381.

34, Caffrey, John. "Computers in Higher Education™. in
D. D. Bushnell and D, W. Allen (eds.), The Computer in
American Education. John Wiley and Sons, Inc., New York,
1967, 216-225.

35. Charp, Sylvia. "Computer Programming Courses in Secondary
Schools™. in D. D. Bushnell and D. W. Allen (eds.), The
Computer in American Education. John Wiley and Sons, Inc.,

New York, 1967, 137-155.

36. Clark, Douglas. "Hardware Systems in the Core Curriculum
of a Computer Science Ph. D. Program'". SIGCSE Bulletin 6, 1
(February 1974), 106-110.

163

37. Coates, C. L. et al. "An Undergraduate Computer Engineering
Option for Electrlcal Engineering™. Proceedings of the IEEE
59, 6 (June 1971), 854-860.

38. Committee on Computer Education. Recommendations
Regarding Computers in High School Education. Conference
Board of the Mathematical Sciences, washington, D. C.,
April 1972.

39. Committee on the Undergraduate Program in Mathematics
(CUPM). Recommendations on the Undergraduate Mathematics
Program for Work in Computing. CUPM, Berkeley, California,
196%.

40. Committee on the Undergraduate Program in Mathematics
(CuPM). A General Curriculum in Mathematics for Colleges.
CUPM, Berkeley, California, 1965.

41. Committee on the Undergraduate Program in Mathematics
(CUPM). A Curriculum in Applied Mathematics. CUPM, Berkeley,
California, 1966.

42. Committee on the Undergradudte Program in Mathematics
(CuPM). Recommendations in the Undergraduate Mathematics
Program for Engineers and Physicists. CUPM, Berkeley,
California, 1967.

43. Committee on the Undergraduate Program in Mathematics
(CUPM). Recommendations for an Undergraduate Program in
Computational Mathematics. CUPM, Berkeley, California, 1971.

44, Connolly, Frank W.. "A Community/Junior College View
of Curriculum '68"™. SIGCSE Bulletin 5, 1 (February 1973),
68-69.

45. Conte, Sam. "History and Activities of the ACM Curriculum
Committee”. in William Viavant (ed.), Proceedings of the '
Park City Conference on Computers in Undergraduate Education.
The University of Utah, Salt Lake City, 1969, 38-50.

46. COSINE Committee. Computer Science in Electrical
Engineering. Commission on Engineering Education, washington,
D. C., September 1967.

47, COSINE Committee, Some Spec1f1cat10ns for a Computer-
Oriented First Course in Electrical Engineering. Commlssion
on Engineering Education, washington, D. C., September 1968.

48. COSINE Committee. An Undergraduate Electrical Engineering
Course on Computer Organization. Commission on Engineering
Education, Washlngton, D, C., October 1968.

164

49. COSINE Committee. Some Specifications for an Undergraduate
Course in Digital Subsystems. National Academy of Engineering,
Washington, D. C., November 1968.

50. COSINE Committee. Impact of Computers on Electrical
Engineering Education - A View from Industry. National
cademy of Engineering, Washington, D. C., September 1969,

51. COSINE Committee. Digital Systems Laboratory Courses
and Laboratory Developments. National Academy of Engineering,
Washington, D. C., March 1971.

52. COSINE Committee. An Undergraduate Course on Operating
Systems Principles. National Academy of Engineering, washington,
D. C., April 1972.

53. COSINE Committee. Minicomputers in the Digital Laboratory
Program. National Academy of Engineering, washington, D. C.,

- April 1972.

S54. Couger, J. D.. "The Undergraduate Program in Information
Systems Development”. Proceedings of the ACM 1972 Annual
Conference. ACM, New York, 1972, 138-14%4,

55. Couger, J. Daniel. "Curriculum Recommendations for
Undergraduate Programs in Information Systems". Communications
of the ACM 16, 12 (December 1973), 727-749.

56. Cowan, D. D. and R. B. Roden. "A Large-Scale Undergraduate
Programme in Computer Science'. SIGCSE Bulletin 2, 3 (November
1970), 18-23.

57. Curriculum Committee on Computer Science (C3S). "An
Undergraduate Program in Computer Science, Preliminary
Recommendations™. Communications of the ACM 8, 9 (September
1965), 543-552.

58. Curriculum Committee on Computer Science (C3S). "Curriculum
'68, Recommendations for Academic Programs in Computer Science®.
Communications of the ACM 11, 3 (March 1968), 151-197.

59. de Campo, Leila. "Introducing the Computer at a Small
Liberal Arts College'. SIGCSE Bulletin 2, 3 (November 1970),
113-117.

60. Denning, Peter J.. "Principles of Computer System
Organization"”. SIGCSE Bulletin 2, 3 (November 1970), 45-55.

61. Denning, Peter J.. Operating Systems Principles and
Undergraduate Computer Science Curricula. Technical Report
TR-99, Computer Science Laboratory, Department of Electrical
Engineering, Princeton University, September 1971.

165

62, Denning, Peter J.. "Operating Systems Principles and
Undergraduate Computer Science Curricula'. Proceedings of
the AFIPS 1972 SJCC. AFIPS Press, Montvale, New Jersey,

. 1972, 849-855.

63. Dennis, Jack B.. "Inter-relating Hardware and Software
in Computer Science Education". Proceedings of the AFIPS
1969 SJCC. AFIPS Press, Montvale, New Jersey, 1969, 537-538.

64. Dodd, George. "Position Statement on Industry Reaction
to Computer Science Education". SIGCSE Bulletin 6, 1 (February
1974), 79.

65. Eckhouse, Richard H.. "The Computer Science Laboratory".
SIGCSE Bulletin 4, 1 (March 1972), 42-45.

66. Ein-Dor, Phillip and Norman Lyons. "Systems Analysis
in Computer Science Education". SIGCSE Bulletin 2, 5
(December 1970), 16-21.

67. Elliott, Roger W.. '"Master's Level Computer Science
Curricula™. Communications of the ACM 11, 7 (July 1968),
507-508. -

68. Ellis, Robert A. and Donald F. Wann. "Teaching Computer
Design Using Macromodules". SIGCSE Bulletin 4, 1 (March
1972), 160-162.

69. Engel, G. L.. "Programming Systems Workshop". SIGCSE
Bulletin 1, 3 (October 1969), 10-27.

70. Engel, Gerald L.. "Computer Science Instruction in
Small Colleges - An Initial Report®. SIGCSE Bulletin 3, 2
(June 1971), 8-18.

71. Engel, Gerald L.. "Input from ACM Curriculum Committee
on Computer Science'". SIGCSE Bulletin 3, 4 (December 1971),
30-39.

72. Engel, Gerald L. and Bruce H. Barnes. "The Effect of
Environment on Computer Science Education". SIGCSE Bulletin
4, 1 (March 1972), 13-18.

73. Engel, G. L. and N. D. Jones. '"Discrete Structures
in the Undergraduate Computer Science Curriculum". SIGCSE
Bulletin 5, 1 (February 1973), 56-59.

74. Finerman, A.. University Education in Computing Science.
Academic Press, New York, 1968.

166

75. Finerman, Aaron and Anthony Ralston. "Undergraduate
Programs in Computing Science in the Tradition of Liberal
Education". Proceedings of the World Conference on Computer
Education 1970. Science Associates/International, New YOrk,

1970, IL/195-11/200.

76. Fischer, P, C.. "Theory of Computing in Computer Science
Education". Proceedings of the AFIPS 1972 SJCC. AFIPS
Press, Montvale, New Jersey, 1972, 857-864.

77. Fisher, P., W. Hankley and V. Wallentine. "Separation
of Introductory Programming and Language Instruction™.
SIGCSE Bulletin 5, 1 (February 1973), 9-14.

78. Forsythe, George E.. "An Undergraduate Curriculum in
Numerical Analysis”. Communications of the ACM 7, 4 (April
1964), 214-215.

79. Forsythe, G.. "A University Educational Program in
Computer Science". Communications of the ACM 10, 1 (January
1967), 3-11.

80. Forsythe, George E.. "Let's not Discriminate Against
Good Work in Design or Experimentation". Proceedings of
the AFIPS 1969 SJCC. AFIPS Press, Montvale, New Jersey,
1969, 538-530.

81l. Forsythe, George E. (Chairman). "Graduate Education:
Edited Session from ACM 70". in R. W. Bemer (ed.), Computers
and Crisis. ACM, New York, 1971, 109-117.

82. Galler, B. A., R. Wagman and J. Bravatto. "CRISP: An
Interactive Student Registration System". Proceedings of
the ACM 1973 Annual Conference. ACM, New York, 1973, 283-289.

83. Gluckson, Fred A.. "Position Statement on Industry
Reaction to Computer Science Education". SIGCSE Bulletin
6, 1 (February 1974), 79.

84. Goddard, Alton R.. "Structure and Content of Service
Courses in Computer Science for Other Disciplines™. SIGCSE
Bulletin 5, 1 (FPebruary 1973), 15-17.

85. Gorn, Saul. "The Computer and Information Sciences:
A New Basic Discipline”. SIAM Review 5, 2 (April 1963),
150-155,

86. Gorn, Saul. "Mechanical Languages: A Course Specification".
Communications of the ACM 7, 4 (April 1964), 219-222.

167

87. Gorn, Saul. "The Computer and Information Sciences
and the Community of Discipline. Behavioral Science 12, 6
(November 1967), 433-452.

88. Gorsline, George W. and Duff Green. "Computer Science
Education Through a Rearview Mirror: Experience with Curriculum
'68 at Virginia Polytechnic Institute and State University".
SIGCSE Bulletin 5, 1 (February 1973), 102-105.

89. Gotterer, Malcolm H., and Bruce H. Barnes. "The Computer
Science M. S. Graduate". SIGCSE Bulletin 5, 1 (February
1973), 106-109.

90. Graham, Robert M.. "Teaching Systems Programming and
Software Design, Problems and Solutions". SIGCSE Bulletin
2, 3 (November 1970), 56-60.

91. Greenawalt, E. M. and D. I. Good. "The MIX Computer
"as an Educational Tool”. Proceedings of the ACM 1972 Annual
Conference. ACM, New York, 1972, 302-309.

92. Gregory, R. T.. "Review of Curriculum '68". Computing
Reviews (Review Number 14,390) 9, 6 (June 1968), 304-305.

93, Gries, David. ™"What Should we Teach in an Introductory
Programming Course?”, SIGCSE Bulletin 6, 1 (February 1974),
81-89.

94. Hale, John E.. "Remarks by Representatives of Computer
Manufacturers™. in William Viavant (ed.), Proceedings of
the Park City Conference on Computers in Undergraduate
Education. The University of Utah, Salt Lake City, 1969,
107-111.

95. Hamblen, John W.. "Computer Science and Related Degree
Programs in U. S. Higher Education". SIGCSE Bulletin 1, 4
(December 1969), 9-13.

96. Hamblen, John W.. "Computer and Related Degree Programs
in U. S. Higher Education Through June 30, 1967". Proceedings
of the World Conference on Computer Education 1970. Science
Associlates/International, New York, 1960, II/201-II/216.

97. Hamblen, John W.. "Using Computers in Higher Education:
Past Recommendations, Status and Needs". Communications
of the ACM 14, 11 (November 1971), 709-712.

98. Hamblen, John W.. "Degree Programs in Computer Science,
Data Processing, etc. Offered by Institutions of Higher
Education During 1969-70, 1970-71, and 1971-72%", SIGCSE
Bulletin 4, 2 (July 1972), 29-39. .

168

99. Hammer, Preston C.. "Computer Science and Mathematics".
Proceedings of the World Conference on Computer Education
1970. Science Associates/International, New York, 1970,

I/65-1/67.

100. Hammer, Preston C.. "Undergraduate Computer Science
Education™, SIGCSE Bulletin 2, 3 (November 1970), 1-5.

101. Hammer, P. C. (Chairman). "Undergraduate Education:
Edited Session from ACM 70". in R. W. Bemer (ed.), Computers
and Crisis. ACM, New York, 1971, 102-108.

102, Hamming, R. W.. "One Man's View of Computer Science',
Journal of the ACM 16, 1 (January 1969), 3-12.

103. Hebenstreit, J.. "A Curriculum in Computer Science
Oriented Toward Computer Design". Proceedings of the IFIP
Congress 1968 (Applications 2, Booklet G). North-Holland
Publishing, Amsterdam, The Netherlands, 1968, 53-57.

104, Heilman, Robert L. and Gordon P. Ashby. "Re-evaluation
of Debugging in the Computer Science Curriculum". SIGCSE
Bulletin 3, 4 (December 1971), 15-18.

105. Heimer, Ralph T. and Lars C. Jansson. "Teacher Training
in Computer Education™. SIGCSE Bulletin 5, 1 (February 1973),
48-500

106. Horowitz, E., H. L. Morgan and A. C. Shaw. "Computers
and Society: A Proposed Course for Computer Scientists".
Communications of the ACM 15, 4 (April 1972), 257-261.

107. Horowitz, E. and M. C. Horowitz. "Computers and Society:
An Interdisciplinary Approach". SIGCSE Bulletin 5, 1 (February
1973), 134-137.

108. Hosch, Frederick A.. "Some Comments on the Role of
Computer Science Education™. SIGCSE Bulletin 5, 3 (September
1973), 13-17.

109. Hunt, Earl. "The Computer Science Teaching Laboratory
at the University of Washington™. SIGCSE Bulletin 2, 3
(November 1970), 30-33.

110. IFIP Technical Committee for Education. Computer
Education in Secondary Schools, An Outline Guide for Teachers.
IFIP, Amsterdam, The Netherlands, 1970.

111. IFIP Technical Committee for Education. Computer
Education in Secondary Schools, An Outline Guide (revised
edition). IFIP, Amsterdam, The Netherlands, 1971.

169

112, Johnson, David L.. "Computers in the Engineering
College Curriculum". Journal of Engineering Education
58, 8 (April 1968), 909-9iLl.

113. Joubert, G. R. and L. Ottilie Stander. "A New Approach
to the Presentation of Computer Science Courses". The Computer
Bulletin 14, 10 (October 1970), 342-343,

114. Kalmey, Donald L.. "Profile of a Computer and Information
Science B. S. Graduate". SIGCSE Bulletin 6, 1 (February
1974), 40-45.

115. Xandel, Abraham. "Computer Science - A Vicious Circle'.
Communications of the ACM 15, 6 (June 1972), 470-471.

116. KXandel, Abraham. "Computer Science - Seminars for
Undergraduates”. Communications of the ACM 16, 7 (July
1973), 442. ’

117. Xeenan, Thomas A.. "Computers and Education"..
Communications of the ACM 7, 4 (April 1964), 205-209.

118. Kerighan, B. W. and P. J. Plauger. "Programming
Style', SIGCSE Bulletin 6, 1 (February 1974), 90-96.

119. Korfhage, Robert R.. "Logic for the Computer Sciences".
Communications of the ACM 7, 4 (April 1964), 216-218.

120, Xuno, Susumu and A. G. Oettinger. "Computational
Linguistics in a Ph. D. Computer Science Program'". Communica-
tions of the ACM 11, 12 (December 1968), 831-836.

121. La France, Jacques and R. Waldo Roth. '"Computer
Science for Liberal Arts Colleges". SIGCSE Bulletin 5, 1
(Pebruary 1973), 70-76.

122, Lee, Hans E.. "Computers in Society--A Course Description,
Purpose and Rationale”. SIGCSE Bulletin 4, 1 (March 1972),
97-102.

123. Leininger, C. W.. "Computer Related Studies at a
College of Arts, Sciences and Education", SIGCSE Bulletin
4, 3 (October 1972), 19-20.

124, Lynn, M. Stewart. "Computer Science Education - The
Need for Interaction”. Proceedings of the AFIPS 1972 SJCC.
AFIPS Press, Montvale, New Jersey, 1972, 847-848.

125. Magleby, Kay. "Remarks by Representatives of Computer
Manufacturers”. in William Viavant (ed.), Proceedings of the
Park City Conference on Computers in Undergraduate Education.
The University of Utah, Salt Lake City, 1969, 112-121.

170

126. Mapp, George A.. "A Proposal for a B. S. in Information
Systems”, SIGCSE Bulletin 5, 1 (February 1973), 91-96.

127. Marsland, T. A. and J. Tartar. "A Course in Minicomputer
Systems™. SIGCSE Bulletin 5, 1 (February 1973), 153-156.

128. Mashey, J. R., G. M. Campbell and C. Forney. "ASSIST -
A Self Modifiable Assembler for Instructional Purposes'.
Proceedings of the ACM 1972 Annual Conference. ACM, New
York, 1 .‘9‘7%‘," 310-312%

129. Mashey, John R.. YASSIST: Three Years Experience
with a Student-Oriented Assembler™. SIGCSE Bulletin 5, 1
(February 1973), 157-165.

130. Mathis, R. F. and M. C. Yovits. "Computer and Information
Science in Engineering Education". Engineering Education
61, 4 (January 1971), 340-342.

131. Mathis, Robert F. and Douglas S. Kerr. "Development
of a Multifacetted Undergraduate Program in Computer and
Information Science'". SIGCSE Bulletin 4, 1 (March 1972),
8-12,

132, Mathis, Robert F.. "Teaching Debugging™. SIGCSE
Bulletin 6, 1 (February 1974), 59-63.

133. Matula, David W.. "The Emergence of Computational
Arithmetic as a Component of the Computer Science Curriculum”.
SIGCSE Bulletin 2, 3 (November 1970), 41-44.

134, McFarlan, F. Warren and Richard L. Nolan. "Curriculum
Recommendations for Graduate Professional Programs in
Information Systems: Recommended Addendum on Information
Systems Administration". Communications of the ACM 16, 7
(July 1973), 439-441,

135, McGee, Pat. "Computer Science Graduates - Industry/
University Gap?". SIGCSE Bulletin 4, 3 (October 1972), 44-56.

136. McNaughton, Robert. "Automata, Formal Languages,
Abstract Switching and Computability in a Ph. D. Computer
Science Program”". Communications of the ACM 11, 11 (November
1968), 738-740, 746.

137. Melkanoff, M. A.. "An M. S. Program in Computer Science".
SIGCSE Bulletin 5, 1 (February 1973), 77-82.

138. Melkanoff, M. A., B. H. Barnes and G. L. Engel. "The
Masters Degree Program in Computer Science”. Proceedings of
the AFIPS 1973 NCC. AFIPS Press, Montvale, New Jersey,
1973, 563, :

171
139. Menninga, Larry D.. "Introducing Practical Experience
into Curriculum 68 Through Integration of Courses". SIGCSE
Bulletin 6, 1 (February 1974), 152-154.
140. Minsky, Marvin. "Speculations about Man and Machines™.
in William Viavant (ed.), Proceedings of the Park Cit
Conference on Computers in Unaergraguate Education. %he
University of Utah, Salt Lake City, 1969, 145-185.

141. Muller, David E.. "The Place of Logical Design and
Switching Theory in the Computer Curriculum". Communications
of the ACM 7, 4 (April 1964), 222-225.

142, Naur, Peter, '"Datalogy, the Science and Data and Data
" Processes and its Place in Education'. Proceedings of the
IFIP Congress 1968 (Applications 2, Booklet G). North-
Holland Publishing, Amsterdam, The Netherlands, 1968, 48-52.

143. Oliver, James R.. "The Need to Upgrade Computer Science
Curricula™. SIGCSE Bulletin 5, 4 (December 1973), 14-18.

144. Organick, E. I.. "Review of Curriculum '68". Computin
Reviews (Review Number 14,389) 9, 6 (June 1968), 303-304.

145. Parnas, D. L.. "R Course on Software Engineering
Techniques™. SIGCSE Bulletin 4, 1 (March 1972), 154-159.

146. Perlis, A. J.. "Programming of Digital Computers".
Communications of the ACM 7, 4 (April 1964), 210-214.

147. Perlis, Rlan J.. "Identifying and Developing Curricula
in Software Engineering". Proceedings of the AFIPS 1969
SJCC, AFIPS Press, Montvale, New Jersey, 1969, 540-541.

148. Piore, E. R.. "Challenges to Progress in Computing".
SIGCSE Bulletin 1, 3 (October 1969), 7-9.

149, Pitts, Gerald N. and Roy S. Ellzey. "Computer Science -
A Professional Degree'., SIGCSE Bulletin 5, 4 (December 1973),
8_110

150. President's.Science Bdvisory Committee. Computers
in Higher Education. The White House, Washington, D. C.,
February 1967.

151, Rahimi, M. A. and H. G. Hedges. "Evolution of a Computer
Science Academic Program in a College of Education™. SIGCSE
Bulletin 5, 1 (February 1973), 110-114.

152, Ralston, Anthony. "FORTRAN and the First Course in
Computer Science". SIGCSE Bulletin 3, 4 (December 1971), 24-29.

172
153. Rechard, Ottis W.. "The Computer Sciences in Colleges
and Universities". in D. D. Bushnell and D. W. Allen (eds.),

The Computer in American Education. John Wiley and Sons,
Inc., New York, 1967, 156-164.

154. Rechard, Ottis W,. "ACM Curriculum Committee Proposal'.
SIGCSE Bulletin 2, 2 (June-July 1970), 28-30.

155, Rosen, S.. "Review of Curriculum '68". Computin
Reviews (Review Number 14,391) 9, 6 (June 1968), 305-306.

156, Rosin, Robert F.., "Teaching about Programming".
Communications of the ACM 16, 7 (July 1973), 435-439.

157. Roth, R. Waldo. ™A Computer Science Curriculum for a
Liberal Arts College'. SIGCSE Bulletin 4, 3 (October 1972),
20-35.,

158. Rubinoff, Morris. "The Computer and Information
Sciences Programs at the University of Pennsylvania”.
Proceedings of the World Conference on Computer Education
1970. Science Associates/International, New York, 1970,
I1/377-11/381.

159. Salton, G.. "Information Science in a Ph. D. Computer
Science Program". Communications of the ACM 12, 2 (February
1969), 111-117.

160. Salton, Gerard. '"Introductory Programming at Cornell".
SIGCSE Bulletin 5, 1 (February 1973), 18-20.

161. Sampson, Jeffrey R.. "An Introductory Adaptive Systems
Course for Undergraduate Computer Science Majors'. SIGCSE
Bulletin 6, 1 (February 1974), 148-151.

162. Schwenkel, Frieder. "The Undergraduate Computer Science
Program at the University of Notre Dame™. SIGCSE Bulletin
2, 5 (December 1970), 11-15.

163. Schweppe, Earl (Chairman). "Summary of Workshop
Meeting, Curriculum and Programs". in William Viavant (ed.),
Proceedings of the Park City Conference on Computers in
Undergraduate Education. The University of Utah, Salt Lake
City, 1969, 187-192.

164. Schweppe, Earl J. (Chairman). "Organizing for Computer
Science Education: Edited Session from ACM 70", din R. W.
Bemer (ed.), Computers and Crisis. ACM, New York, 1971,
118-125.

165. Semple, Wolsey A.. "Evolution of a Computer Science
Program”. SIGCSE. Bulletin 5, 1 (February 1973), 115-118.

173

166. Setzer, Valdermer W. and Charles H., Warlick. "A
Unified Approach to Compiler Theory and Construction".

Proceedings of the IFIP Congress 71. North-Holland Publishing,
Amsterdam, The Netherlands, 1972, 1523-1529.

167. Shaw, Alan C. and Nelson H. Weiderman. "A Multiprogramming
System for Education and Research”. Proceedings of the IFIP
Congress 71l. North-Holland Publishing, Amsterdam, The
Net%erlands, 1972, 1505-1509.

168. Sistare, John H. and Norman E. Sondak. "Introduction
to Digital Computer Programming - An IPI Approach". SIGCSE
Bulletin 6, 1 (February 1974), 184-194.

169. Sloan, M. E.. "Computer Architecture in U. S. and
Canadian Electrical Engineering Departments'". SIGCSE Bulletin
6, 1 (February 1974), 111-115.

170. Stark, Richard H.. "Computer Science Needs its
Laboratory". SIGCSE Bulletin 4, 1 (March 1972), 46-48.

171. Sterling, T. and S. Pollack. "Experience with a
'"Universal' Introductory Course in Computer Science'.
SIGCSE Bulletin 2, 3 (November 1970), 106-112,

172. Tartar, J. and J. P. Penny. '"Undergraduate Education
in Computing Science - Some Immediate Problems"., SIGCSE
Bulletin 4, 1 (March 1972), 1-7.

173, Teichroew, D. (ed.). "Education Related to the Use
of Computers in Organizations". Communications of the ACM
14, 9 (September 1971), 573-588.

174, Thomas, Richard T.. "Computer Architecture in the Computer
Science Curriculum". SIGCSE Bulletin 6, 1 (February 1974),
116-120,

175. Tracz, Will. "The Use of ATOPSS: For Presenting
Elementary Operating System Concepts". SIGCSE Bulletin
6, 1 (February 1974), 74-78.

176. Tremblay, J. P. and R. Manohar. YA First Course in
Discrete Structures with Applications to Computer Science.
SIGCSE Bulletin 6, 1 (February 1974), 155-160.

177. wvan Dam, Andries, Charles M. Strauss, Charles McGowan,
and Jean Morse. "A Survey of Introductory and Advanced
Programming Courses'". SIGCSE Bulletin 6, 1 (February 1974),
174-183.

174

178. vVviavant, William (ed.). Proceedings of the Park City
Conference on Computers in Undergraduate Education. uUniversity
of Utah, salt Lake City, 1969.

179. Vickers, F. D.. '"Data on Computer Science Departments/
Curricula™. SIGCSE Bulletin 3, 4 (December 1971), 40-45.

180. Walker, Justin C. and Charles E. Hughes. "POPSS -
A Parametric Operating System Simulator'. SIGCSE Bulletin
5, 1 (February 1973), 166-172.

181. Walker, Terry M.. "Computer Science Curricula Survey".
SIGCSE Bulletin 5, 4 (December 1973), 19-28.

182. Wegner, Peter. "Problems of Computer Science Education
in Small Colleges"”. SIGCSE Bulletin 3, 3 (September 1971),
15-18 .

- 183. Wegner, Peter. "A View of Computer Science Education”.
American Mathematical Monthly 79, 2 (February 1972), 168-179.

184. Wegner, Peter. "A View of Computer Science Education".
Proceedings of the IFIP Congress 71. North-Holland Publishing,
Amsterdam, The Netherlands, 1972, 1515-1522,

185. Weinberg, Bernhard and Leonard H. Weiner. "A Systems
Programming Course Using the HMS 5050, A Counterfeit, Hands-
on, Large-Scale Computer System'". SIGCSE Bulletin 6, 1
(February 1974), 64-73.

186. Willoughby, Theodore C.. "Student Attitudes Toward
Computers", SIGCSE Bulletin 5, 1 (February 1973), 145-148.

187. Wright, Albert H.. "Education of the Computer Pro-
fessional™. Proceedings of the World Conference on Computer
Education 1970. Science Associates/international, New York,

1970, I11/149-11/152.

188. Yeh, Raymond T., Donald I. Good and David R. Musser.
"™ew Directions in Teaching the Fundamentals of Computer
Science--Discrete Structures and Computational Analysis™.
SIGCSE Bulletin 5, 1 (February 1973), 60-67.

189. Yovits, M. C.. "Information Science: Toward the
Development of a True Scientific Discipline". American
Documentation 20, 4 (October 1969), 369-376.

190. Zadeh, L. A.. "Computer Science as a Discipline'.
Journal of Engineering Education 58, 8 (April 1968), 913-916.

175

191, Zadeh, L.. "Applied Computer Science". Proceedings

of the AFIPS 1969 SJCC.
1969, 539-540,

AFIPS Press, Montvale, New Jersey,

Vita

Gerald Lawrence Engel was born in Cleveland, Chio, on
July 5, 1942, He attended Cleveland Heights High School
graduating in 1960. He received the B. S. degree Magna Cum
Laude from Hampden-Sydney College in 1964 and the M. A. degree
from Louisiana State University in 1965.

Mr. Engel has taught at Randolph-Macon College and
Hampden-Sydney College in addition to serving as an Instructor
~at The Pennsylvania State University. He has also been
affiliated with the U. S. Naval Weapons Laboratory.

He is presently Head of the Department of Computing
and Statistics at The Virginia Institute of Marine Science,
holding an appointment as Associate Professor in the School
of Marine Science of the College of William and Mary, and
the Department of Marine Science of the University of
Virginia.

In August 1964, he married the former Doris E. Smith

of Roanoke, Virginia. They have two children.

